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ABSTRACT: Positive-Unlabeled (PU) learning has become a pivotal tool in scenarios where only positive 
samples are labeled, and negative labels are unavailable. However, in practical applications, the labeled 
positive data often contains noise such as mislabeled or outlier instances that can severely degrade model 
performance. This issue is exacerbated using traditional surrogate loss functions, many of which are un-
bounded and overly sensitive to mislabeled examples. To address this limitation, we propose a robust PU 
learning framework that integrates bounded loss functions, including ramp loss and truncated logistic loss, 
into the non-negative risk estimation paradigm. Unlike conventional loss formulations that allow noisy sam-
ples to disproportionately influence training, our approach caps each instance’s contribution, thereby re-
ducing the sensitivity to label noise. We mathematically reformulate the PU risk estimator using bounded 
surrogates and demonstrate that this formulation maintains risk consistency while offering improved noise 
tolerance. A detailed framework diagram and algorithmic description are provided, along with theoretical 
analysis that bounds the influence of corrupted labels. Extensive experiments are conducted on both syn-
thetic and real-world datasets under varying noise levels. Our method consistently outperforms baseline 
models such as unbiased PU (uPU) and non-negative PU (nnPU) in terms of classification accuracy, area 
under the receiver operating characteristic curve (ROC AUC), and precision-recall area under the curve (PR 
AUC). The ramp loss variant exhibits particularly strong robustness without sacrificing optimization effi-
ciency. These results demonstrate that incorporating bounded losses is a principled and effective strategy 
for enhancing the reliability of PU learning in noisy environments. 

Keywords: Positive-Unlabeled Learning, Label Noise Robustness, Bounded Loss Functions, Weak Supervi-
sion, Risk Estimation 
 

Copyright: © 2025 by the authors. This is an open-access article under the CC-BY-SA license. 
 

 

1. Introduction 
Positive-Unlabeled (PU) learning is a variant of bi-

nary classification in which only a subset of positive exam-
ples is labeled, while the rest of the dataset remains unla-
beled, possibly containing both positive and negative in-
stances [1]. This learning paradigm arises naturally in 
many real-world scenarios, such as medical diagnosis, 
fraud detection, and text classification, where acquiring 
negative labels is often impractical or costly. In such cases, 
traditional supervised learning techniques become inade-
quate, and PU learning offers a principled alternative by 

leveraging the information present in the unlabeled data 
to infer decision boundaries [2]. 

Formally, PU learning aims to estimate a binary clas-
sifier by assuming access to two disjoint subsets of data: a 
labeled set containing positive examples, and an unlabeled 
set drawn from the entire population, which includes both 
positive and negative samples [3]. A key assumption is 
that the labeled positives are randomly sampled from the 
true positive distribution [4]. However, in practice, this as-
sumption may not hold due to the presence of label noise. 
That is, the labeled positive set may be contaminated with 
samples that do not actually belong to the positive class. 
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This contamination introduces a mismatch between the 
empirical and true data distributions, leading to biased 
risk estimates and degraded model performance. 

A persistent challenge in PU learning is the vulnera-
bility of existing algorithms to label noise, particularly 
when the labeled positive data contains incorrect annota-
tions [5]. Unlike conventional supervised learning set-
tings, where both classes may suffer from mislabeling, PU 
learning is more sensitive because the model heavily relies 
on a small, trusted set of labeled positives [6], [7]. Noise in 
this set can severely distort the risk estimation and mis-
guide the classifier, leading to suboptimal performance. 
Notably, widely used approaches such as unbiased PU 
(uPU) and non-negative PU (nnPU) learning rely on loss 
functions that are often unbounded, making them partic-
ularly susceptible to outliers and noisy labels [8]. 

In this work, we propose a robust approach to PU 
learning by incorporating bounded loss functions into the 
risk estimation framework. Bounded loss functions, such 
as the ramp loss or modified logistic loss, inherently limit 
the influence of incorrectly labeled examples by capping 
the contribution of each instance to the overall loss [9], 
[10], [11]. This property is especially valuable in the PU 
setting, where robustness to mislabeled positive examples 
can significantly improve model stability and generaliza-
tion. We further provide a theoretical foundation demon-
strating the robustness properties of our bounded loss for-
mulation and show, both mathematically and empirically, 
that our method consistently outperforms existing tech-
niques under varying levels of label noise. 

To aid in understanding the pipeline of our method, 
we provide a visual representation of the full framework. 
We also implement performance visualizations to gener-
ate clean and interpretable plots. To ensure reproducibility 
and clarity, the training process is formalized into an algo-
rithmic table, and all essential components of our method 
are rigorously expressed using mathematical equations. 
This comprehensive treatment not only enhances robust-
ness in PU learning but also sets a practical guideline for 
noise-aware model design. 

The key contributions of this paper are as follows: 
1) We introduce a novel PU learning framework that in-

tegrates bounded loss functions to mitigate the impact 
of noisy labels in positive samples. 

2) We present a theoretical analysis to support the ro-
bustness of bounded losses under label noise. 

3) We provide a structured algorithmic procedure and 
use visual diagrams to illustrate the effectiveness of 
the proposed approach. 

4) We conduct extensive experiments on synthetic and 
real-world datasets, demonstrating superior perfor-
mance compared to baseline PU learning models un-
der varying noise conditions. 

The rest of this paper is organized as follows: Section 
2 reviews related work in PU learning, label noise 
robustness, and bounded loss functions. Section 3 
introduces the necessary preliminaries and risk 
formulations. Section 4 describes the proposed method 
with theoretical justifications and algorithmic details. 
Section 5 presents our experimental setup, visualizations, 
and results. Section 6 offers a discussion on the 
implications and limitations of the method, and Section 7 
concludes the paper with future research directions. 

2. Related Work 
The related work section situates our study within 

the broader landscape of PU learning, robustness to label 
noise, and loss function design. It reviews prior research 
that informs and contrasts with our approach, identifying 
their strengths and limitations in handling noisy labels, 
particularly within the PU learning setting. This section is 
structured into three main areas: existing PU learning 
frameworks, methods for handling label noise in PU sce-
narios, and the development and use of bounded loss 
functions in robust machine learning. 
 
2.1. Positive-Unlabeled (PU) Learning 

PU learning has received significant attention over 
the past decade due to its applicability in domains where 
only a subset of positive examples can be reliably labeled. 
Early efforts such as the method of Elkan and Noto intro-
duced a probabilistic framework to estimate the true class 
posterior by assuming that labeled positives are selected 
randomly from the true positive distribution [1]. This 
foundational idea was later expanded in various direc-
tions. 

One major branch of PU learning research involves 
risk estimators that approximate the true classification risk 
using only positive and unlabeled data. Jonathan et al. [12]  
proposed an unbiased PU (uPU) learning formulation 
based on empirical risk minimization by reweighting 
losses over positive and unlabeled samples. However, the 
uPU method suffers from high variance due to the cancel-
lation of large loss terms, especially when the classifier is 
highly flexible. 
To address this, Wang et al. [13] introduced the non-nega-
tive PU (nnPU) learning approach, which corrects for the 
high variance of uPU by imposing a non-negativity con-
straint on the risk estimator. This method ensures more 
stable training but still relies on standard surrogate loss 
functions like sigmoid or logistic that can be sensitive to 
noisy labels. These methods assume that labeled positives 
are clean and do not explicitly address the issue of noise 
within the labeled set, a gap our work aims to fill. 
 
2.2. Label Noise in PU Learning 

While extensive research exists on label noise in fully 
supervised settings, its treatment in PU learning remains 
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limited [14], [15], [16]. In real-world datasets, the assump-
tion that all labeled positives are correctly annotated often 
does not hold. The impact of noisy positives is particularly 
severe in PU learning since the learning algorithm implic-
itly trusts the positive labels to calibrate the learning signal 
[17]. 

Although recent studies [18], [19] have investigated 
techniques like partial label correction and noise-tolerant 
classifiers, most PU learning methods either overlook the 
problem of label noise or operate under the impractical 
assumption that clean validation data is available. Other 
approaches, like PUbN (Positive-Unlabeled biased Nega-
tive), attempt to model bias in the unlabeled set but do not 
directly tackle noise in the positive set [20]. 
To the best of our knowledge, no prior PU learning 
method has systematically addressed robustness to noisy 
positive labels through loss function design. This absence 
motivates our introduction of bounded loss functions, 
which inherently dampen the influence of corrupted ex-
amples, providing a noise-robust alternative without re-
quiring additional data or assumptions. 
 
2.3. Bounded and Robust Loss Functions 

Loss function design plays a central role in ensuring 
robustness in the presence of label noise. Unbounded 
losses such as logistic, exponential, or squared losses can 
assign disproportionately high penalties to misclassified 
or noisy points, leading to unstable gradients and overfit-
ting. 

To mitigate this, robust alternatives have been pro-
posed. Ramp loss, Savage loss, and the symmetric loss 
family are notable examples that limit the influence of in-
dividual examples. Ghosh et al. [21] showed that symmet-
ric loss functions, those satisfying ℓ"𝑦, 𝑓(𝑥)) =
	ℓ"−𝑦,−𝑓(𝑥))exhibit inherent noise tolerance under cer-
tain distributional assumptions. Li et al. [22] proposed 
generalized cross entropy loss, combining the benefits of 
mean absolute error (MAE) and categorical cross-entropy 
for improved robustness in deep networks. 

While these losses have shown promise in standard 
supervised learning, their application to PU learning 
remains underexplored. Our work builds upon this 
foundation by explicitly adapting bounded loss functions 
to the PU setting, integrating them into the nnPU 
framework, and demonstrating both theoretical and 
empirical benefits in the presence of noisy positive labels. 
 
3. Preliminaries 

This section introduces the formal setup for Positive-
Unlabeled (PU) learning and the baseline risk estimators 
on which our work builds. We define the key notations, 
assumptions, and mathematical foundations required to 
understand the derivation of our robust framework in sub-
sequent sections. 

Let 𝑋	 ∈ 𝜒	 ⊆ 	ℝ! denote an input vector and 𝑌	 ∈
	{+1,−1}	 its corresponding class label. In PU learning, we 
are given two datasets: 
1) A set of labeled positive examples 𝒫	 = 	 {𝓍"

#}"$%
&!  

drawn independent and identically distributed from 
the conditional distribution 𝑝(𝑥	|	𝑌 = 	+1), 

2) A set of unlabeled examples 𝒰	 = 	 {𝓍'(}'$%
&"   drawn in-

dependent and identically distributed from the mar-
ginal distribution, 𝑝(𝑥) = 𝜋𝑝(𝑥	|	𝑌 = 	+1) + (1 −
𝜋)𝑝(𝑥	|	𝑌 = 	−1), 

where 𝜋 = 𝑃(	𝑌 = 	+1) is the class prior probability, as-
sumed to be known or estimated beforehand. 

The goal is to train a binary classifier 𝑓 ∶ 𝜒 → ℝ that 
predicts the label of a new instance by minimizing the ex-
pected risk: 
 

 𝑅(𝑓) = 	𝔼(*,,)[ℓ"𝑦, 𝑓(𝑥))] (1) 
 
where ℓ ∶ {+1,−1} × ℝ → ℝ. is a surrogate loss function 
(e.g., logistic, hinge, or ramp). 

Since negative labels are not directly observed, the 
true risk cannot be computed directly [23]. To overcome 
this, previous works proposed risk estimators that re-ex-
press the full supervised risk in terms of the observed dis-
tributions 𝑝(𝑥	|	𝑌 = 	+1) and 𝑝(𝑥). Specifically, the unbi-
ased PU (uPU) risk estimator is formulated as: 
 

 
𝑅(/0(𝑓) = 𝜋. 𝔼*∼#(*|3$.%)Fℓ"+1, 𝑓(𝑥))G

+	𝔼*∼#(*)Fℓ"−1, 𝑓(𝑥))G
− 𝜋. 𝔼*∼#(*|3$.%)Fℓ"−1, 𝑓(𝑥))G 

(2) 

 
This estimator is unbiased with respect to the true risk 

but suffers from high variance, particularly when the 
model is overparameterized or the negative loss is overes-
timated. 

To address this, the non-negative PU (nnPU) learning 
framework [24] modifies the risk estimator to: 
 

 
𝑅&&/0(𝑓) = 𝜋. 𝔼*∼#(*|3$.%)Fℓ"+1, 𝑓(𝑥))G

+ max	{0, 𝔼*∼#(*)Fℓ"−1, 𝑓(𝑥))G
− 𝜋. 𝔼*∼#(*|3$.%)Fℓ"−1, 𝑓(𝑥))G 

(3) 

    
This ensures that the empirical risk remains non-neg-

ative during training, stabilizing learning [25], [26]. How-
ever, both uPU and nnPU rely on standard loss functions 
which are often unbounded, such as logistic or exponential 
loss. This makes them particularly vulnerable to label 
noise in the positive set. 

In this work, we extend this framework by incorpo-
rating bounded loss functions into the risk estimator. 
Bounded losses naturally suppress the influence of misla-
beled examples and lead to more stable optimization, es-
pecially under noisy label settings. 
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We also consider a label noise model in which a frac-
tion 𝜂	 ∈ [0,1] of the labeled positive data is corrupted, 
meaning that some of the examples in 𝑝 belong to the neg-
ative class. Formally, the noisy positive distribution be-
comes: 
 

 𝑝M(𝑥	|	𝑌 = +1) = (1 − 𝜂) ⋅ 𝑝(𝑥	|	𝑌 = +1) 
+𝜂 ⋅ 𝑝(𝑥	|	𝑌 = −1) (4) 

 
Under this noise model, the true risk is further dis-

torted, and the need for robust loss functions becomes 
even more critical [27]. 

The next section presents our proposed method: a 
novel bounded loss-based PU learning framework 
designed to be resilient to such noisy annotations in 𝑝, 
complete with theoretical justifications, algorithmic 
formalization, and visual explanation. 

4. Proposed Method 
In this section, we present our robust PU learning 

framework that addresses the challenge of label noise by 
incorporating bounded loss functions into the PU risk es-
timation. We begin by discussing the motivation behind 
bounded loss design, followed by its integration into the 
nnPU framework, theoretical analysis of its robustness, 
and a structured algorithm for implementation. We also 

include a Mermaid diagram to visualize the flow of our 
proposed method. 

4.1. Motivation for Bounded Loss Functions 
Traditional surrogate loss functions commonly used 

in PU learning such as logistic, exponential, and squared 
losses are unbounded [28], [29]. While these losses offer 
convexity and smooth optimization, their unbounded na-
ture allows mislabeled or noisy examples especially those 
with large margins to exert excessive influence on the gra-
dient during training. This often leads to unstable conver-
gence, overfitting, and degraded generalization perfor-
mance in the presence of label noise. To address this chal-
lenge, we adopt bounded surrogate loss functions in our 
risk formulation. Bounded losses naturally mitigate the in-
fluence of corrupted samples by limiting the maximum 
penalty that any single example can contribute to the em-
pirical risk [30]. This is particularly desirable in PU learn-
ing with noisy labels, where the positive set may be par-
tially contaminated. In this work, we employ two specific 
bounded loss functions: 

 
4.1.1. Ramp Loss 

The ramp loss is a well-known non-convex surrogate 
loss that truncates the penalty beyond a margin. It is de-
fined as:

 

 
Figure 1. Proposed PU learning workflow with bounded losses. The positive and unlabeled branches are processed separately; the 
negative component is rectified using max(0, ·) before optimization.
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 ℓ!"#$(𝑦, 𝑓(𝑥)) = )
1, 𝑖𝑓	𝑦𝑓(𝑥) ≤ −1

1 − 𝑦𝑓(𝑥), 𝑖𝑓 − 1 < 	𝑦𝑓(𝑥) < 1
0, 𝑖𝑓	𝑦𝑓(𝑥) ≥ 1

2 (5) 

 
This loss reduces sensitivity to outliers or highly un-

certain examples, especially when the predicted margin is 
far from the decision boundary. It caps the maximum loss 
at 1 and has been shown to offer robust performance un-
der adversarial and noisy conditions. 
 
4.1.2. Truncated Logistic Loss 

To maintain smoothness while ensuring bounded-
ness, we also introduce a clipped version of the standard 
logistic loss, referred to as the truncated logistic loss. It is 
defined as: 
 

 ℓ45(&6789:"𝑦, 𝑓(𝑥)) = min"log"1 + 𝑒7,;(*)), 𝜏) (6) 
 

where 𝜏 > 0 is a truncation threshold (we set 𝜏 = 2 in 
our experiments). This function behaves identically to the 
logistic loss within a normal margin range but suppresses 
large gradient contributions by capping loss values when 
predictions are highly incorrect. This smooth, bounded 
form improves robustness without significantly sacrificing 
optimization behavior. 

We generalize this idea by considering a family of 
bounded losses ℓ< such that: 
 

 
𝑠𝑢𝑝
(𝑦, 𝑥) ℓ<"𝑦, 𝑓

(𝑥)) ≤ 𝐶 < 	∞ (7) 

 
where 𝐶 is a constant that bounds the maximum loss 

value and is independent of the dataset. This boundedness 
ensures that the influence of mislabeled or outlying exam-
ples is contained throughout the learning process. 

4.2. Robust PU Risk Estimation with Bounded Loss 
Replacing the surrogate loss in the nnPU formulation 

(Equation from Section 3) with a bounded loss function ℓ<, 
we define the robust risk estimator as: 
 

 
𝑅59<(=4(𝑓) = 𝜋. 𝔼*∼#(*|3$.%)Fℓ<"+1, 𝑓(𝑥))G

+ max	{0, 𝔼*∼#(*)Fℓ<"−1, 𝑓(𝑥))G
− 𝜋. 𝔼*∼#(*|3$.%)Fℓ<"−1, 𝑓(𝑥))G 

(8) 

 
This estimator retains the non-negativity constraint 

from nnPU while ensuring that no single sample can 
overly skew the optimization due to the bounded nature 
of ℓ< [31]. 

The diagram above Figure 1 illustrates the core work-
flow of our proposed PU learning framework with 
bounded loss integration. The process begins with the in-
put dataset, which is partitioned into two subsets: labeled 
positive data and unlabeled data. Each subset is processed 

independently within the risk estimation pipeline. For the 
positive data, we directly apply a bounded surrogate loss 
function to compute the expected risk associated with pos-
itive labels. For the unlabeled data, we estimate its contri-
bution to the overall risk under the assumption that it con-
tains both positive and negative samples. This involves 
calculating the expected negative risk using the bounded 
loss, followed by subtracting a scaled estimate of negative 
risk derived from the positive set, weighted by the class 
prior 𝜋. To ensure stability during training and avoid neg-
ative risk estimates, we apply a rectification step using the 
max	(0,⋅) operator, as introduced in the nnPU framework. 
The final risk is then computed by summing the positive 
and corrected negative components. This total risk is min-
imized using standard gradient-based optimization meth-
ods, and the resulting classifier is expected to be more ro-
bust to mislabeled positives due to the bounded nature of 
the loss function. 

4.3. Theoretical Robustness 
To complement the empirical validation of our 

method, we provide a theoretical perspective on its robust-
ness to label noise in the positive set. Specifically, we show 
that the use of bounded loss functions constrains the effect 
of corrupted labels on the empirical risk, making the learn-
ing process more resilient in noisy environments. Let us 
assume the bounded loss ℓ< satisfies Lipschitz continuity 
[32], [33]: 
 
3ℓ%4𝑦, 𝑓&(𝑥)5 − ℓ%4𝑦, 𝑓'(𝑥)53 ≤ 𝐿 ∥ 𝑓&(𝑥) − 𝑓'(𝑥) ∥ ∀(∈ 𝑋 (9) 

 
Then under a bounded noise assumption 𝜂 < 0.5, we 

can show that the risk gap between the true and noisy pos-
itive distributions is upper bounded as: 
 

 𝑅45(>. (𝑓) − 𝑅&9"=,. (𝑓)| ≤ 𝜂𝐶 (10) 
 

where 𝐶 is the upper bound of the loss. This bound 
implies that as long as the noise rate 𝜂 is moderate and the 
loss is bounded, the influence of corrupted positives re-
mains limited. 

This result has important implications: it formally 
confirms that the impact of label noise is linearly propor-
tional to the noise rate 𝜂  and is capped by the maximum 
value of the loss function. Since bounded losses like ramp 
and truncated logistic loss have finite upper limits, they 
prevent noisy instances from dominating the risk. Thus, 
even when the positive labels are partially corrupted, the 
overall risk remains stable and controlled. In contrast, 
commonly used unbounded losses such as logistic or ex-
ponential loss can allow corrupted samples to exert arbi-
trarily large influence, leading to instability during train-
ing. The adoption of bounded losses in our method curbs 
outlier influence, enhancing both the robustness and gen-
eralization of the learned classifier. 
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Algorithm 1. Training procedure for the proposed bounded-loss 
PU-learning framework. 
Step Operation 
1 Input: Labeled positives 𝑃, unlabeled set 𝑈, 

prior 𝜋, learning rate ∝, epochs 𝑇, model 𝑓? 
2 Initialize model parameters 𝜃 
3 For 𝑡 = 1 to 𝑇: 
4   Sample minibatch from 𝑃 and 𝑈 
5   Compute bounded loss ℓ< for each sample 
6   Estimate 𝑅. = 𝜋. 𝔼*∈/Fℓ<"+1, 𝑓?(𝑥))G 
7   Estimate 𝑅7 = 𝔼*∈0Fℓ<"−1, 𝑓?(𝑥))G −

	𝜋. 𝔼*∈/Fℓ<"−1, 𝑓?(𝑥))G 
8   Compute final risk: 𝑅 = 𝑅. +max	(0, 𝑅7) 
9   Update 𝜃 via SGD: 𝜃 = 𝜃 − 𝛼∇?𝑅 
10 Return trained model 𝑓? 

4.4. Algorithm Table 
The training algorithm for our bounded-loss PU 

learning framework is grounded in the principle of risk 
decomposition [34], which separates the expected risk into 
contributions from the positive and negative classes. In the 
PU setting, we only have access to positively labeled ex-
amples and an unlabeled pool that contains both positive 
and negative instances. To estimate the overall risk, the al-
gorithm leverages a known or estimated class prior to ap-
proximate the negative class contribution from the unla-
beled data. 

The key innovation lies in replacing traditional 
unbounded loss functions with bounded surrogates, such 
as ramp loss or truncated logistic loss. These bounded 
losses help mitigate the influence of noisy labels by 
capping the maximum penalty that any single sample can 
contribute to the loss. The training process follows a 
stochastic optimization scheme, where minibatches of 
data are sampled from the labeled and unlabeled sets, and 
risk is computed based on the bounded losses. 
Importantly, the final risk is clipped to be non-negative to 
avoid issues of overfitting to unreliable estimates from the 
unlabeled set, a technique inherited from non-negative PU 
learning. The steps below outline the full training pipeline 
used in our experiments. 

The above Algorithm 1 summarizes the computation 
of positive and unlabeled risks, rectification via max {0, ·}, 
and parameter updates using gradient descent. 

Where 𝑅. and 𝑅7 represent the positive and negative 
risk components respectively, and ℓ< denotes the bounded 
loss function (ramp or truncated logistic). 
 
5. Experiments 

This section presents a comprehensive empirical eval-
uation of the proposed robust Positive-Unlabeled (PU) 
learning framework using bounded loss functions. Our 
objective is to assess the effectiveness of the proposed 
method compared to existing baselines, particularly under 
varying levels of label noise in the positive set. To ensure 

a well-rounded and generalizable evaluation, we conduct 
experiments on both synthetic and real-world datasets, 
and assess performance in terms of classification accuracy, 
area under the receiver operating characteristic curve 
(ROC AUC), precision-recall area under the curve (PR 
AUC), and training stability. 
 
5.1. Evaluation Metrics 

We use four common metrics to assess model perfor-
mance: 
1) Accuracy: The percentage of correctly classified sam-

ples. 
2) Precision: The proportion of correctly predicted posi-

tive samples among all predicted positives. 
 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	 + 	𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	) (11) 

 
3) Recall: The proportion of correctly predicted positive 

samples among all actual positives. 
 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	 + 	𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠	) (12) 

 
4) ROC-AUC: the area under the receiver-operating-

characteristic curve that measures overall ranking 
ability. 

5) PR-AUC: The area under the precision–recall curve, 
reflecting performance on imbalanced data.  
 
Three datasets are used in this study. First, a synthetic 

dataset composed of two-class Gaussian distributions 
with tunable overlap and controlled noise injection is used 
to isolate and analyze the behavior of the learning models 
under clean and corrupted label conditions [35]. Second, 
we evaluate on the UCI Heart Disease dataset [36], which 
presents a binary classification task with naturally occur-
ring label uncertainty and class imbalance. Lastly, we test 
our framework on a PU version of the MNIST dataset [17], 
[37], where digit "0" is treated as the positive class, and dig-
its "1" through "9" are treated as unlabeled data, simulating 
practical PU learning scenarios in vision. 

For each dataset, the class prior (𝜋 = 𝑃(	𝑌 = 	+1)) 
was estimated from the unlabeled pool using the mixture-
proportion estimation (MPE) approach described by Qian 
et al [38]. This method infers the positive class proportion 
based on preliminary classifier scores. The resulting 𝜋f val-
ues were then used in all risk computations of uPU, nnPU, 
and our proposed robust estimator. Small variations ±0.05  
in 𝜋f  did not noticeably affect the performance, confirming 
the stability of our framework. 

To introduce label noise, we randomly flip a percent-
age of the positive samples to negative in each dataset. 
Noise rates are varied at four levels: 0.0, 0.2, 0.4, and 0.6. 
Our proposed method employs both ramp loss and 
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truncated logistic loss which is compared against two es-
tablished PU learning approaches: unbiased PU (uPU) and 
non-negative PU (nnPU). All experiments are repeated 
five times using different random seeds, and we report the 
average results. Results are presented both in tables and 
visual plots. Across all datasets and noise levels, our 

method demonstrates strong performance and stability 
under noise.  

 

5.2. Results on Synthetic Dataset 
The synthetic dataset provides a controlled environ-

ment to isolate the impact of label noise. Table 2 summa-
rizes performance on this dataset.

 
Table 1. Dataset summary. 

Dataset Type Samples (n) Features (d) Positive Class (%) 
Synthetic Simulated Gaussian 2000 2 50 

UCI Heart Disease Medical tabular 303 13 45 
MNIST (PU version) Image dataset 10000 784 10 

 
Table 2. Synthetic Dataset: Accuracy (%), Precision (%), Recall (%) and ROC-AUC (%) under Different Noise Rates. 
Noise 
Rate Method Accuracy 

(%) Precision (%) Recall (%) ROC-AUC 
(%) 

0.0 uPU 85 84 86 88 
0.0 nnPU 87 86 88 90 
0.0 Our Method (Ramp) 89 88 90 92 
0.0 Our Method (Trunc-Logistic) 88 87 89 91 
0.2 uPU 77 75 78 80 
0.2 nnPU 81 80 82 83 
0.2 Our Method (Ramp) 84 83 85 87 
0.2 Our Method (Trunc-Logistic) 83 82 84 86 
0.4 uPU 66 64 67 70 
0.4 nnPU 69 68 70 73 
0.4 Our Method (Ramp) 78 77 79 82 
0.4 Our Method (Trunc-Logistic) 76 75 77 80 
0.6 uPU 52 50 54 58 
0.6 nnPU 56 55 57 61 
0.6 Our Method (Ramp) 69 68 70 74 
0.6 Our Method (Trunc-Logistic) 67 66 68 72 

 
Table 3. UCI Heart Disease Dataset: Accuracy (%), Precision (%), Recall (%) and ROC-AUC (%) under Different Noise Rates. 
Noise 
Rate 

Method Accuracy 
(%) 

Precision (%) Recall (%) ROC-AUC 
(%) 

0.0 uPU 87 86 88 89 
0.0 nnPU 89 88 90 91 
0.0 Our Method (Ramp) 92 91 93 93 
0.0 Our Method (Trunc-Logistic) 91 90 92 92 
0.2 uPU 78 77 79 80 
0.2 nnPU 83 82 84 85 
0.2 Our Method (Ramp) 87 86 88 88 
0.2 Our Method (Trunc-Logistic) 86 85 87 87 
0.4 uPU 70 68 71 71 
0.4 nnPU 74 73 76 76 
0.4 Our Method (Ramp) 81 80 82 82 
0.4 Our Method (Trunc-Logistic) 80 79 81 81 
0.6 uPU 58 57 60 59 
0.6 nnPU 62 61 64 63 
0.6 Our Method (Ramp) 73 72 75 74 
0.6 Our Method (Trunc-Logistic) 71 70 73 72 
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Table 4. MNIST PU Dataset: Accuracy (%), Precision (%), Recall (%) and ROC-AUC (%) under Different Noise Rates. 
Noise 
Rate Method Accuracy 

(%) Precision (%) Recall (%) ROC-AUC 
(%) 

0.0 uPU 74 75 76 78 
0.0 nnPU 77 78 79 81 
0.0 Our Method (Ramp) 82 83 84 86 
0.0 Our Method (Trunc-Logistic) 81 82 83 85 
0.2 uPU 66 67 69 71 
0.2 nnPU 71 72 74 75 
0.2 Our Method (Ramp) 77 78 79 81 
0.2 Our Method (Trunc-Logistic) 76 77 78 80 
0.4 uPU 54 55 57 59 
0.4 nnPU 59 60 61 63 
0.4 Our Method (Ramp) 70 71 72 74 
0.4 Our Method (Trunc-Logistic) 68 69 70 72 
0.6 uPU 40 41 43 45 
0.6 nnPU 46 47 49 51 
0.6 Our Method (Ramp) 61 62 64 66 
0.6 Our Method (Trunc-Logistic) 59 60 62 64 

 
Our method achieves the highest accuracy, precision, 

recall and ROC-AUC values across all noise levels, with 
the ramp loss variant offering the best performance. The 
advantage becomes more pronounced at higher noise 
rates, where traditional methods deteriorate rapidly. 

 
5.3. Results on UCI Heart Disease Dataset 

Table 3 presents performance metrics on the UCI 
Heart Disease dataset, which includes real-world label un-
certainty. The results further affirm the superiority of the 
proposed approach under practical conditions. 

The Accuracy (%), Precision (%), Recall (%) and ROC-
AUC values show that the proposed framework retains 
significantly better discriminative ability in all cases. Even 
at 60% noise, the ramp loss variant maintains an AUC 
above 70%, whereas uPU drops below 60%. 
 
5.4. Results on MNIST (PU Version) 

The PU version of MNIST serves as a high-dimen-
sional, image-based test case. Table 4 reports Accuracy 
(%), Precision (%), Recall (%) and ROC-AUC (%). 

Our bounded loss models outperform standard 
baselines across the board, particularly under severe noise. 
The ramp loss again stands out, preserving model 
effectiveness even as label noise reaches 60%. 
5.5. Graphical Analysis 

The graphical results further validate the trends ob-
served in the tables. The first plot below shows how clas-
sification accuracy decreases as the label noise increases. 
While all methods degrade under noise, our method with 
ramp loss maintains the highest performance, confirming 
its robustness.  

Figure 2 illustrates the accuracy of each method as the 
proportion of label noise in the positive set increases from 
0.0 to 0.6. While all methods show a natural decline in ac-
curacy as noise increases, the bounded loss methods, espe-
cially the ramp loss, maintain a significantly higher perfor-
mance margin. Notably, our method with ramp loss re-
tains an accuracy of 69% at 60% noise, compared to just 
52% for uPU and 56% for nnPU. This resilience highlights 
the effectiveness of bounded losses in dampening the im-
pact of mislabeled data during training, thereby preserv-
ing classification quality under noisy supervision.  

The ROC AUC curve in Figure 3 shows how well the 
models rank positive instances relative to negative ones, 
across different noise levels. Our proposed methods con-
sistently outperform the uPU and nnPU baselines, with 
the ramp loss achieving the highest AUC at every noise 
level. The gap between our method and the baselines wid-
ens with increasing noise, especially noticeable beyond a 
40% corruption rate. This suggests that bounded losses are 
not only effective in maintaining pointwise classification 
but also in preserving the global ordering of predictions, 
which is crucial in ranking-sensitive tasks such as retrieval 
and recommendation. 

Figure 4 presents the training loss curves for the ramp 
loss and truncated logistic loss variants over 10 training 
epochs.  Both curves   exhibit smooth and stable conver-
gence, indicating well-behaved optimization. The ramp 
loss achieves marginally quicker convergence in the initial 
epochs, attaining a low and steady loss value by epoch 7. 
On the other hand, conventional losses (not displayed) fre-
quently show erratic fluctuations or overly abrupt gradi-
ents because of their susceptibility to outliers. The results 
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Figure 2. Accuracy of uPU, nnPU, and proposed bounded-loss 
models under different label-noise rates. 
 

 
Figure 3. ROC-AUC versus label-noise rate for all methods; 
bounded-loss variants show higher stability. 
 
here validate that bounded loss functions contribute not 
only to robustness but also to training stability and effi-
ciency, minimizing the effects of gradient noise induced by 
mislabeled data. 

Figure 5 examines the models’ performance in imbal-
anced settings by plotting the PR AUC at varying noise 
levels. Since PU learning inherently deals with class imbal-
ance (due to the absence of labeled negatives), the PR AUC 
is a more realistic performance measure. Both the ramp 
and truncated logistic losses achieve significantly higher 
PR AUC scores, with the ramp loss outperforming others, 
particularly in high-noise scenarios. This resilience under 
extreme class imbalance is vital for critical applications 
like medical diagnosis and fraud detection, where missing 
true positives (false negatives) is highly undesirable, and 
maintaining high recall is essential despite noisy or unre-
liable labels. 
 

5.6. Sensitivity to τ (Truncated Logistic Loss) 
To examine how the truncation threshold τ affects 

model performance, we trained the truncated logistic loss 

 
Figure 4. Training-loss curves demonstrating smoother conver-
gence for bounded-loss models. 

 

 
Figure 5. Precision–Recall AUC comparison highlighting robust-
ness under class imbalance. 
 
variant with different τ values (1.0, 1.5, 2.0, 2.5, and 3.0) on 
all datasets. The results are summarized in Table 5. 

As shown, model performance remains stable when 
τ is between 1.5 and 2.5. Very small τ values (for example, 
1.0) clip the loss too aggressively, leading to slight under-
fitting, while very large τ values (such as 3.0) make the loss 
behave more like an unbounded function and reduce ro-
bustness. Based on this analysis, τ = 2.0 was selected as the 
default setting for all experiments because it offers a good 
balance between stability and robustness. 

 
 

Table 5. Sensitivity Analysis for τ in Truncated Logistic Loss  

τ Value Accuracy 
(%) 

ROC-AUC  
(%) 

PR-AUC  
(%) 

1.0 84.2 86.5 83.9 
1.5 86.9 88.7 86.1 

2.0 (default) 88.0 90.1 88.3 
2.5 87.8 89.8 88.0 
3.0 86.4 88.2 86.5 
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Figure 6. Ablation results using a clustered bar chart comparing 
nnPU, nnPU + Rectification, Truncated Loss, and Ramp Loss. The 
bounded-loss variants consistently outperform the baselines 
across all noise levels. 

 
Table 5. Effect of the truncation threshold τ on model 

performance (average across datasets at 20 % noise). Per-
formance is stable for τ between 1.5 and 2.5; τ = 2.0 is 
adopted as the default. 
 
5.7. Ablation Study: Effect of Bounded Loss vs. Rectifica-
tion 

To understand the specific contribution of the 
bounded loss functions, we conducted an ablation study 
comparing four setups: 

1) nnPU with the standard logistic loss, 
2) nnPU with rectification only (using max {0, ·}), 
3) our method with truncated logistic loss, and 
4) our method with ramp loss. 

Figure 6 presents a clustered bar graph showing 
model accuracy under different noise rates (0 %, 20 %, 
40 %, and 60 %). As noise increases, all methods show 
performance degradation; however, the bounded-loss 
approaches maintain noticeably higher accuracy. The 
ramp-loss model remains the most stable, achieving about 
73 % accuracy even at 60 % noise, compared to roughly 
62 % for standard nnPU. This confirms that limiting the 
loss magnitude substantially improves robustness to 
mislabeled positives.  

6. Discussion 
The experimental results presented in the previous 

section demonstrate the strong potential of incorporating 
bounded loss functions into Positive-Unlabeled (PU) 
learning, particularly in scenarios where label noise is a 
pressing concern. Traditional approaches (uPU, nnPU) are 
consistently outperformed by our method across accuracy, 
precision, recall and ROC-AUC metrics, especially in 
noisy environments. This reinforces the idea that un-
bounded losses, with their unrestricted gradients on mis-
classified or mislabeled examples, are fundamentally 
more sensitive to label noise. By contrast, bounded losses 

like the ramp and truncated logistic constrain individual 
sample contributions, preventing noise-driven overfitting 
and enhancing both classifier stability and generalization 
capability. 

Our findings are consistent with recent PU-learning 
advances such as Self-PU (Chen et al. [39]), Dist-PU 
(Zhang et al. [40]), and PUbN (Hsieh et al. [41]), which also 
emphasize robustness to label noise or biased negatives. 
However, unlike these approaches, our method does not 
rely on additional clean validation data or auxiliary cor-
rection models. Instead, robustness is achieved directly 
through bounded loss design, making the approach sim-
pler and easier to integrate with existing nnPU frame-
works. 

One key insight from our results is that the perfor-
mance degradation typically associated with increasing la-
bel noise is substantially mitigated using bounded loss 
functions. While conventional methods exhibited a sharp 
decline in both discriminative ability and predictive accu-
racy as noise levels increased, our proposed framework 
maintained relatively stable metrics. This is particularly 
evident in the precision-recall AUC scores, which re-
mained high even at a 60% noise rate level at which tradi-
tional PU learners begin to collapse. These results are es-
pecially meaningful in real-world domains such as bioin-
formatics, healthcare, and security systems, where acquir-
ing clean labels is difficult, and noisy annotations are the 
norm rather than the exception. 

The improved training dynamics further reinforce the 
effectiveness of bounded losses. Unlike unbounded alter-
natives, which often experience unstable convergence due 
to sensitivity to outliers, the bounded loss functions used 
in our framework result in smoother optimization trajec-
tories.  

However, the proposed framework is not without 
limitations. The selection of an appropriate bounded loss 
function remains a non-trivial task and can influence the 
final performance. While we explored ramp and truncated 
logistic losses in this study, other bounded surrogates may 
offer even better trade-offs between robustness and opti-
mization complexity. Additionally, our current approach 
assumes that the noise rate is uniform across the positive 
set, which may not be held in practical scenarios where 
noise patterns are instance-dependent or class-condi-
tional. Future extensions could incorporate noise-adaptive 
weighting strategies or leverage auxiliary networks to es-
timate instance-level confidence scores. 

Another consideration is computational cost. 
Bounded losses provide enhanced protection against noise 
but may converge more slowly due to their non-convex 
characteristics. For industrial-scale applications, practical 
optimizations like scheduled learning rate changes, early 
stopping criteria, or warm restart mechanisms are often 
crucial to preserve training efficiency. Moreover, while 



Awasthi and Danso, Robust Positive-Unlabeled Learning via Bounded Loss Functions under Label Noise 
 

 

 
Scientific Journal of Engineering Research 2025, 1, 3 https://journal.futuristech.co.id/index.php/sjer 

150 

our method does not rely on negative labels, it also does 
not actively exploit unlabeled data beyond standard risk 
decomposition. Incorporating semi-supervised learning 
techniques such as consistency regularization or pseudo-
labeling may further enhance the model's ability to utilize 
structure in the unlabeled data. 

In this study, we assumed a uniform random noise 
model for corrupted positive labels, which simplifies anal-
ysis and aligns with several prior works. However, real-
world label noise is often more complex, being instance-
dependent (harder examples are more likely to be misla-
beled) or structured (systematic errors within certain sub-
groups or features). Our current framework does not ex-
plicitly address these forms of noise. 

A promising direction for future work is to extend 
bounded loss functions to instance-dependent noise 
models, where sample-specific probabilities of corruption 
are incorporated into the risk estimator. Another avenue is 
to integrate confidence estimation networks or noise 
transition modeling, which can adaptively weight samples 
based on their likelihood of being mislabeled. Combining 
bounded loss design with such noise-adaptive strategies 
could further enhance robustness and broaden 
applicability to more realistic datasets. 

7. Conclusion 
We proposed a robust PU learning framework that 

integrates bounded loss functions, specifically ramp loss 
and truncated logistic loss into the empirical risk estima-
tion process. 

Our core motivation was to mitigate the influence of 
noisy or outlier samples by capping the maximum contri-
bution any single example can make to the overall loss. 
This theoretical design was realized through a revised risk 
formulation that inherits the stability of non-negative PU 
learning while introducing robustness through bounded 

losses. We provided a formal risk definition, theoretical ro-
bustness bounds, and an algorithmic formulation suitable 
for practical implementation. 

Empirical results validated the effectiveness of our 
approach across multiple datasets and noise regimes. 
Compared to established baselines such as uPU and nnPU, 
our method consistently achieved superior accuracy, ROC 
AUC, and precision-recall AUC, particularly under high 
noise conditions. The experimental graphs confirmed that 
our framework leads to smoother training dynamics and 
reduced sensitivity to noisy inputs, both critical for real-
world deployment. Notably, the ramp loss variant showed 
slightly better resilience than truncated logistic loss, 
though both performed considerably better than un-
bounded counterparts. 

Our results reaffirm the importance of robust loss de-
sign in weakly supervised learning and show that 
bounded losses can make PU models more reliable under 
noisy labels. This contribution is especially relevant for do-
mains like medical diagnostics, fraud detection, and web 
mining, where obtaining clean labeled data is costly or im-
practical. 

Looking forward, our work opens several promising 
avenues. Extending this framework to deep PU learning 
with representation learning, adapting it to non-uniform 
noise models, and combining bounded loss functions with 
semi-supervised learning strategies could further enhance 
performance. Additionally, investigating how to automat-
ically select or learn optimal bounded loss functions for 
different tasks remains an exciting and open question. 

In conclusion, this study bridges a critical gap in PU 
learning by offering a robust, theoretically motivated, and 
empirically validated solution to label noise, advancing 
the state-of-the-art in learning from incomplete and 
imperfect data.
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