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Abstract: Modern low-latency communication systems increasingly rely on spatially coupled low-density 
parity-check (SC-LDPC) codes combined with windowed decoding (WD) to achieve high reliability with 
reduced latency and memory requirements. However, evaluating the intrinsic trade-off between decoding 
complexity and error performance typically measured by the average window iteration count (𝑊!"#$) and 
bit error rate (BER) still depends on computationally intensive Monte Carlo simulations, which limits rap-
id system optimization and real-time design exploration. To address this limitation, this paper proposes a 
hybrid machine learning framework for the joint, non-iterative prediction of 𝑊!"#$	and BER using a sin-
gle set of code and channel parameters. A high-fidelity dataset is generated through extensive SC-LDPC 
windowed decoding simulations across varying window sizes, coupling lengths, and signal-to-noise ratio 
(SNR) conditions. Based on this dataset, a multi-output Random Forest Regressor is trained to exploit the 
shared underlying decoding dynamics that govern both computational complexity and decoding reliabil-
ity. The proposed model achieves accurate simultaneous prediction of 𝑊!"#$	and BER, demonstrating 
strong generalization performance while significantly reducing system evaluation time compared to con-
ventional simulation-based approaches. Feature-importance analysis further reveals the dominant influ-
ence of channel quality and coupling structure on both decoding effort and error performance. These re-
sults indicate that the proposed framework provides an effective surrogate modeling tool for fast design-
space exploration and informed performance–complexity trade-off analysis. The methodology enables 
practical optimization of high-throughput SC-LDPC decoders and supports the development of adaptive 
and resource-efficient communication systems. 

Keywords: Hybrid Machine Learning; SC-LDPC Codes; Windowed Decoding (WD); Random Forest Re-
gressor (RFR); Joint Prediction; Bit Error Rate (BER); Decoding Complexity; Window Mean (𝑊!"#$); Sur-
rogate Modeling. 
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1. Introduction 
Low-density parity-check (LDPC) codes have played 

a fundamental role in modern channel coding theory 
since their introduction by Gallager [1], with their near-
capacity performance later justified within Shannon’s 
information-theoretic framework [2]. Building upon these 
foundations, spatially coupled LDPC (SC-LDPC) codes 
have emerged as a powerful class of error-correcting 

codes, exhibiting the threshold saturation phenomenon 
that enables iterative belief-propagation (BP) decoding to 
approach maximum-a-posteriori (MAP) performance as 
the coupling length increases [3]-[5]. Owing to these 
properties, SC-LDPC codes are widely regarded as strong 
candidates for high-reliability communication systems, 
including optical networks, satellite links, and high-
throughput wireless applications [6], [7].   
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Despite their excellent asymptotic performance, 
practical implementation of SC-LDPC codes introduces 
significant challenges. Conventional full-chain BP decod-
ing incurs high computational complexity, large memory 
requirements, and increased latency, particularly for long 
coupled chains [8], [9]. To mitigate these limitations, 
windowed decoding (WD) has been proposed as an effec-
tive low-latency alternative that restricts iterative decod-
ing to a sliding window over the coupled graph [10]. By 
limiting the decoding scope, WD significantly reduces 
memory usage and latency while preserving near-
threshold error-correction performance [3], [6]. However, 
this advantage comes at the cost of an inherent trade-off 
between decoding complexity and error-rate perfor-
mance, which is influenced by window size, coupling 
parameters, and channel conditions [11]-[13]. 

 Accurately characterizing this performance–
complexity trade-off remains a major challenge in SC-
LDPC system design. Performance evaluation of win-
dowed decoding typically relies on extensive Monte Car-
lo simulations to estimate metrics such as bit-error rate 
(BER) and decoding effort, particularly in low-error-rate 
regimes [14]. These simulations are computationally ex-
pensive and time-consuming, limiting rapid design-space 
exploration, hardware optimization, and real-time system 
adaptation. As a result, there is a growing need for effi-
cient predictive tools that can estimate decoder behavior 
without executing full iterative decoding.  

In parallel, machine learning (ML) techniques have 
gained increasing attention in the context of LDPC and 
SC-LDPC decoding. Prior works have explored ML-
assisted decoding strategies, including near-ML decoding 
algorithms, reinforcement-learning-based scheduling, 
and reliability-driven decoding enhancements [15]-[18]. 
Reduced-complexity decoding methods, such as 
weighted bit-flipping and reliability-based approaches, 
have also been investigated to alleviate computational 
burden while maintaining acceptable error performance 
[19]-[21]. While these approaches focus on improving the 
decoding process itself, they still require iterative decod-
ing execution and do not address the problem of predict-
ing decoder behavior at a system level.  

 Motivated by this gap, this work proposes a hybrid 
machine learning framework for the joint, non-iterative 
prediction of two key performance metrics in SC-LDPC 
windowed decoding: the average window iteration count 
(window mean), which reflects decoding complexity, and 
the resulting bit-error rate (BER), which reflects decoding 
reliability. By leveraging a multi-output Random Forest 
Regressor trained on a high-fidelity dataset generated via 
controlled Monte Carlo simulations, the proposed 
framework exploits the intrinsic correlation between de-
coding complexity and error performance. This unified 
learning approach enables accurate surrogate modeling 

of SC-LDPC decoder behavior across diverse system con-
figurations, significantly reducing reliance on computa-
tionally expensive simulations. 

The main contributions of this work are summarized 
as follows: 

• A joint surrogate modeling framework for SC-
LDPC windowed decoding that simultaneously 
predicts decoding complexity and error perfor-
mance. 

• A multi-output machine learning approach that 
captures the inherent dependence between win-
dow mean and BER, outperforming independent 
single-output prediction models. 

• A comprehensive evaluation and feature-
importance analysis that provides insight into 
how system parameters influence decoding be-
havior, offering practical guidance for SC-LDPC 
design and optimization. 

The rest of this paper is organized as follows: Section 
2 reviews recent advances in SC-LDPC codes and decod-
ing strategies, including windowed decoding, high-
throughput hardware implementations, reduced-
complexity decoding algorithms, and machine-learning-
based optimization approaches. Section 3 presents the   
figure illustrating the methodological workflow. Section 
4 presents the proposed hybrid methodology, describing 
the SC-LDPC system model, dataset generation process, 
multi-output Random Forest Regressor architecture, and 
evaluation metrics. Section 5 reports and analyzes the 
simulation results, including feature importance analysis 
and comparative performance evaluation against baseline 
models. Finally, Section 6 concludes the paper by sum-
marizing the main findings and outlining potential direc-
tions for future research. 

 
2. Background and Related Work 

This section reviews prior research relevant to spa-
tially coupled LDPC (SC-LDPC) codes, windowed decod-
ing strategies, reduced-complexity decoding methods, 
and machine-learning-assisted approaches. The focus is 
on technical developments and limitations that motivate 
the proposed surrogate modeling framework. 
 
2.1. Spatially Coupled LDPC Codes and Windowed De-
coding 

SC-LDPC codes extend conventional LDPC con-
structions by introducing structured coupling between 
adjacent code blocks, which significantly improves itera-
tive decoding thresholds through the phenomenon of 
threshold saturation [3]-[5]. Analytical and design-
oriented studies have demonstrated that spatial coupling 
enables belief-propagation (BP) decoding to achieve near-
optimal performance under a wide range of channel con-
ditions [3], [5]. These properties have been explored for 
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both binary and non-binary SC-LDPC codes, highlighting 
the robustness of spatial coupling across different code 
structures [3], [22].   

To address the high latency and memory require-
ments of full-chain BP decoding, windowed decoding 
(WD) has been proposed as a practical alternative [10]. 
WD restricts message passing to a sliding window of 
fixed size, allowing partial decoding of the coupled graph 
while maintaining strong error-correction performance. 
Several works have analyzed the impact of window size, 
coupling parameters, and decoding schedules on the 
convergence behavior and error performance of WD [10], 
[12], [13]. Design-oriented studies have further examined 
how window size and coupling structure influence finite-
length performance and decoding stability [5], [7]. 

 
2.2. Decoding Complexity and Performance Trade-Offs 

A fundamental challenge in LDPC and SC-LDPC 
decoding is the trade-off between decoding complexity 
and error performance. Information-theoretic analyses 
have established lower bounds on decoding effort and 
highlighted how graph structure and iterative decoding 
dynamics influence computational complexity [8], [9]. 
Practical studies have shown that decoding complexity 
per iteration and total decoding effort are strongly de-
pendent on channel conditions and code parameters [8], 
[11]. 

For windowed decoding, this trade-off becomes 
more pronounced due to localized decoding and inter-
window dependencies. Error propagation across window 
boundaries and premature stopping can significantly de-
grade performance if decoding parameters are not care-
fully chosen [12], [13]. Adaptive window scheduling and 
variable window strategies have been proposed to miti-
gate these effects and improve robustness under chal-
lenging channel conditions [23], [24]. However, these ap-
proaches still rely on iterative decoding execution and 
require extensive simulation to evaluate their perfor-
mance. 
 
2.3. Reduced-Complexity Decoding Algorithms 

To alleviate the computational burden of iterative BP 
decoding, a variety of reduced-complexity decoding al-
gorithms have been proposed. Weighted bit-flipping 
(WBF) and its variants offer simplified decoding by selec-
tively updating unreliable bits, achieving lower complex-
ity at the cost of some performance degradation [21]. 
Hardware-oriented implementations have demonstrated 
that such approaches can significantly reduce computa-
tional load and power consumption in practical decoders 
[17], [19]. 

Reliability-driven methods, including BP-LED and 
related algorithms, further reduce complexity by selec-
tively erasing or reprocessing unreliable symbols during 

decoding [18]. These techniques have been analyzed un-
der various channel models, including AWGN, and have 
shown improved performance–complexity trade-offs 
compared to conventional BP decoding [18], [20]. While 
effective, these methods still operate within the decoding 
loop and do not eliminate the need for iterative message 
passing. 

 
2.4. Machine Learning in LDPC and SC-LDPC Decoding 

Recent years have seen growing interest in applying 
machine learning to LDPC decoding. ML-based ap-
proaches have been explored to approximate near-
maximum-likelihood decoding, optimize message-
passing schedules, and enhance decoder robustness [15], 
[16]. Reinforcement learning has been employed to learn 
adaptive decoding policies for sparse graph-based codes, 
demonstrating performance improvements over fixed 
scheduling strategies [16].  

 In addition to decoder-centric approaches, ML tech-
niques have been investigated for performance modeling 
and system-level analysis. However, existing studies 
primarily focus on improving decoding algorithms rather 
than predicting decoding outcomes. As a result, there is 
limited work on surrogate models that estimate decoding 
complexity and error performance directly from system 
parameters, without executing full iterative decoding. 
This gap becomes particularly significant for SC-LDPC 
windowed decoding, where decoding complexity and 
reliability are intrinsically coupled and expensive to 
evaluate through simulation.  

 
2.5.   Research Gaps 

There are still a number of significant gaps in the 
present literature, despite the substantial advancements 
mentioned above.  Few studies attempt to jointly estimate 
decoding complexity and error-rate performance from 
system parameters, despite the fact that several discuss 
the hardware complexity, finite-length behavior, and de-
coding performance of SC-LDPC systems.  The majority 
of current efforts concentrate on enhancing the decoding 
process itself, whether through learning-based decoders, 
algorithmic improvements, reliability-based corrections, 
or scheduling optimizations. However, they do not offer 
prediction tools that estimate decoder behavior prior to 
carrying out complete iterative decoding. 

Despite growing in popularity, machine-learning-
assisted decoding has mostly focused on improving mes-
sage passing or optimising decoding schedules rather 
than creating surrogate models for system-level assess-
ment. This creates a gap in approaches that do not re-
quire computationally demanding Monte Carlo simula-
tions in order to quickly estimate performance indicators 
such as BER or average iteration count. Related studies 
have demonstrated the effectiveness  of  data-driven  sur- 
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Figure 1. Methodological workflow illustrating the research 
stages used to develop and evaluate the proposed hybrid ma-
chine learning framework. 
 
rogate modeling frameworks for system-level perfor-
mance estimation, motivating the methodology adopted 
in this work [25]. 

Via building a multi-output Random Forest model 
trained on a large dataset produced via controlled SC-
LDPC simulations, the current study directly overcomes 
these shortcomings.  The suggested surrogate model re-
flects the associated behavior of decoding difficulty and 
reliability by forecasting both the average number of iter-
ations per window 𝑊!"#$ and the consequent BER.  Fur-
ther information about how window size, SNR, coupling 
parameters, and other design elements interact to affect 
decoder performance may be found in the accompanying 
feature-importance study.  Thus, our predictive approach 
offers a useful substitute for conventional full-scale simu-
lation-based evaluation and is a major step towards data-
driven design and optimization of SC-LDPC systems. 

 
3. Research Stages 

This study follows a structured, multi-stage research 
workflow designed to ensure transparency, reproducibil-
ity, and systematic development of the proposed hybrid 

machine learning framework. The overall methodology 
progresses from system modeling and data generation to 
predictive modeling and performance evaluation. Each 
stage builds logically upon the previous one, enabling a 
clear traceability between the problem formulation and 
the final outcomes. 

Figure 1 illustrates the complete methodological 
workflow adopted in this work, highlighting the sequen-
tial research stages used to obtain the reported results. 
 
3.1. Stage 1: System Modeling and Parameter Definition 

The research begins with the definition of the SC-
LDPC communication system under an AWGN channel. 
Key code, decoding, and channel parameters such as 
window size, coupling length, lifting factor, maximum 
iterations, and signal-to-noise ratio (SNR) are specified to 
represent realistic decoding scenarios under windowed 
belief propagation (BP). 
 
3.2. Stage 2: Monte Carlo Simulation and Data Generation 

Extensive Monte Carlo simulations are performed 
using windowed decoding to emulate practical SC-LDPC 
decoder behavior. For each configuration of system pa-
rameters, decoding is executed until predefined statistical 
stopping criteria are satisfied, ensuring reliable estima-
tion of performance metrics. 
 
3.3. Stage 3: Performance Metric Extraction 

From each simulation run, two complementary per-
formance metrics are extracted: 

• Window Mean (𝑊!"#$), representing the average 
number of decoding iterations per window and 
serving as a measure of decoding complexity. 

• Bit Error Rate (BER), representing decoding reli-
ability and communication performance. 

These metrics jointly characterize the internal com-
putational effort and external error performance of the 
decoder. 

 
3.4. Stage 4: Dataset Construction 

The simulation outputs are aggregated to form a la-
beled dataset consisting of input feature vectors (system 
and channel parameters) and corresponding output tar-
gets (𝑊!"#$ and BER). This dataset serves as the ground 
truth for training and validating the machine learning 
models. 

 
3.5. Stage 5: Machine Learning Model Training 

The dataset is partitioned into training and testing 
subsets. A multi-output Random Forest Regressor is then 
trained to jointly learn the nonlinear relationship between 
the input parameters and both output metrics. Joint 
learning enables the model to exploit the intrinsic correla-
tion between decoding complexity and error perfor-
mance. 
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Table 1. Input Features for the Multi-Output Regression Model. 

Parameter Symbol Description Value / 
Range 

Lifting 
Factor 

𝐿% Determines the degree 
of code coupling and 
resulting block length. 

{1,2,4,8} 

Window 
Size 

𝑊& Size of the decoding 
window (in coupled 
blocks). 

[8,64] 
(Integer) 

Code Rate 𝑅% Ratio of information 
bits to total bits. 

0.5 
(Fixed) 

Channel 
SNR 

𝑆𝑁𝑅'( Signal-to-Noise Ratio of 
the AWGN channel. 

[1.5,4.0] 
dB 

Max Itera-
tions 

𝐼 Maximum iterations al-
lowed for the BP de-
coder. 

50 
(Fixed) 

Coupling 
Factor 

𝐶) Degree of coupling be-
tween protographs. 

3 
(Fixed) 

 
3.6. Stage 6: Model Evaluation and Validation 

The trained model is evaluated on unseen test data 
using standard regression metrics, including the coeffi-
cient of determination (R²), root mean square error 
(RMSE), and mean absolute error (MAE). This stage veri-
fies the model’s generalization capability and prediction 
accuracy across diverse SC-LDPC configurations. 

 
3.7. Stage 7: Outcome Analysis 

Finally, the trained surrogate model is analyzed to 
assess prediction performance and extract insights into 
the influence of system parameters on decoding complex-
ity and reliability. These outcomes demonstrate the effec-
tiveness of the proposed framework as a fast and accu-
rate alternative to computationally expensive Monte Car-
lo simulations. 

 
4. Proposed Hybrid Methodology 

The creation of a data-driven model that can concur-
rently forecast two crucial performance metrics—decoder 
complexity (𝑊!"#$) and error rate (BER)— from a single 
set of code and channel parameters forms the basis of this 
study. The system model, the procedure for creating the 
dataset, the multi-output regression model's design, and 
the metrics utilized for thorough assessment are all de-
scribed in this part. 

 
4.1. SC-LDPC System Model and Data Synthesis 

The method is based on a simulated communication 
system that employs a spatially-coupled low-density par-
ity-check (SC-LDPC) code with a fixed-rate (𝑅% = 0.5) 
additive white gaussian noise (AWGN) channel. The de-
coding process uses the traditional Windowed Decoding 
(WD) technique, which is based on the Belief Propagation 

(BP) algorithm, in accordance with the specified system 
model. 

Input Features (X)  have six fundamental, non-
redundant factors make up the machine learning model's 
input vector X which collectively define the channel state, 
the decoding process, and the code structure. Table 1 lists 
these attributes together with the sampling ranges used 
to generate the dataset. 

 
4.1.1 Decoding Process and Message Passing 

In order to minimize time at the expense of error 
correcting capability, the WD process applies the iterative 
belief update to a sliding window of size 𝑊& throughout 
the connected chain. Passing messages between variable 
nodes (v) and check nodes (c) on the Tanner Graph rep-
resentation of the code is the main function of this proce-
dure, which is a specific application of Factor Graph de-
coding. Each node separately changes its belief about 
whether a bit is accurate or whether a parity check is sat-
isfied. This repeated, local information exchange is the 
core of the decoding process. The recursive formula pro-
vides the variable node update equation, which estab-
lishes the message 𝑚*→%

(-)  delivered from variable node n 
to check node c at iteration 𝑡. 
 

 𝑚*→%
(-) = 𝑁* + 5 𝑚/0→%

-12

/!∈4(5)\%

 (1) 

 
The channel log-likelihood ratio (LLR), which is the 

first extrinsic information regarding the reliability of the 
received bit straight from the noisy channel, is represent-
ed here by 𝑁*. Before any decoding is done, this LLR is 
essentially a measure of the belief state. The set of all 
check nodes linked to the variable node (v), omitting the 
check node (c), is denoted as H(v)\c. The summing term 
compiles all of the extrinsic data (parity constraints) that 
were obtained from every other check node in the pre-
ceding iteration (t − 1). By continuously integrating the 
noisy channel evidence with the structural constraints 
imposed by the code, this iterative process guarantees 
that the decision on a bit's value is refined. This leads to 
an improved estimation with each subsequent iteration 
until a valid code word is found or a maximum iteration 
limit is reached. A practical implementation element that 
is essential for high-throughput systems is the use of the 
sliding window (𝑊&), which reduces latency and memory 
use by limiting the computationally demanding belief 
propagation to a smaller, localized portion of the received 
data. 

Output Targets (Y) shows for a given input X, the 
multi-output model is intended to generate a two-
dimensional output vector Y = [𝑊!"#$, 𝐵𝐸𝑅]. These met-
rics measure both the outward communication dependa-
bility and the internal computing cost at the same time. 
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Table 2. summarizes the configuration and hyperparameter 
settings of the machine learning models used to evaluate the 
proposed 𝑊!"#$ and BER prediction framework. 

Category Description / Setting 

Learning Paradigm Supervised regression 
Prediction Strategy Joint (multi-output) predic-

tion 
Target Metrics Window Mean (𝑊!"#$ ), Bit 

Error Rate (BER) 
Primary Model Multi-Output Random For-

est Regressor 
Baseline Models Linear Regression (LR), De-

cision Tree Regressor (DT), 
Single-Output Random For-
est Regressors 

Input Features Window size, coupling 
length, lifting factor, channel 
SNR (code rate and max itera-
tions fixed) 

Number of Trees 100 
Tree Depth Grown until purity or mini-

mum sample threshold 
Feature Selection per 
Split 

Random subset of input fea-
tures 

Bootstrap Sampling Enabled 
Training/Test Split 80% / 20% 
Random Seed Fixed for reproducibility 
Optimization Criteri-
on 

Mean Squared Error (MSE) 

Evaluation Metrics R², RMSE, MAE 
Prediction Mode Non-iterative surrogate es-

timation 

 
a. Window Mean(𝑊!"#$): This represents the av-

erage number of iterations carried out through-
out all decoding windows (M) during a simula-
tion run. It is a direct indicator of the decoder's 
computing effort and acts as the main internal 
complexity metric. Increased processing time 
and power consumption are indicated by a 
greater 𝑊!"#$ value, which is usually necessary 
when the channel quality is low or the code is 
running close to its performance limit. This is 
how the metric is computed. 
 

 𝑊!"#$ =
1
𝑀5𝐼7

!

782

 (2) 

 
Where 𝐼7 denotes how many iterations were car-
ried out on the 𝑗-9 decoding window. The metric 
offers a reliable, empirical evaluation of the dy-
namic operational load of the decoder, which 
varies according to the degree of channel im-

pairments, by averaging this number of itera-
tions. 

b. Bit Error Rate (BER): This is the proportion of 
wrongly decoded bits 𝑁:;;  to all sent infor-
mation bits 𝑁-<-/=. It controls the total quality of 
service and is the crucial external indicator of 
communication dependability. After the decod-
ing process is finished, it indicates the system's 
ultimate failure rate, and its prediction is crucial 
for system design and specification. The BER is 
computed as follows: 

 

 BER =
𝑁:;;
𝑁-<-/=

 (3) 

 
4.1.2. Dataset Generation 

Extensive Monte Carlo simulations were used to 
create a high-fidelity training dataset of 2,000 distinct la-
beled samples. The most resource-intensive stage is creat-
ing this dataset, but it is essential to ensuring the surro-
gate model's predicted accuracy. Every simulation point 
was run under strict termination requirements to guaran-
tee statistical stability for the low error rate labels—a 
need for accurately characterizing system performance at 
realistic operating points. In particular, the simulation 
was run for a specific set of 𝐗 parameters until it reached 
a minimal criteria of either 100 frame errors or 10> de-
coded bits. This extensive simulation depth reduces the 
possibility of noise and bias in the training labels by en-
suring that even extremely small error probabilities are 
predicted with a high degree of certainty. The robust 
multi-output regression model is trained and validated 
using this synthetic dataset, which serves as the essential 
ground truth. 

 
4.2. Multi-Output Regression Model Architecture 

The Random Forest Regressor (RFR) algorithm, 
which was deliberately selected for its resilience in man-
aging the intricate, non-linear, and frequently discontin-
uous relationships typical of contemporary coding sys-
tem performance measures, is the basis for the Multi-
Output Regression Model used in the suggested frame-
work.  RFR is a strong and dependable option for non-
parametric regression because it can implicitly handle 
complex feature interactions without requiring explicit 
modeling and because it is relatively insensitive to fea-
ture scaling and possible outliers in the Monte Carlo da-
taset. 

The machine learning models were configured to 
jointly predict decoding complexity and decoding relia-
bility, represented by the window mean (𝑊!"#$)  and bit 
error rate (BER), respectively. A multi-output Random 
Forest Regressor was selected as the primary model due 
to its ability to capture nonlinear relationships and 
shared dependencies between the two target metrics. 
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Baseline models, including linear regression, decision 
tree regression, and independent single-output Random 
Forest models, were used for comparative evaluation. In 
Table 2, all models were trained using the same input 
feature set and data partitioning to ensure a fair and con-
sistent performance comparison. 

  
4.2.1. Model Justification 

Theoretically, it is crucial to use a single multi-
output model,  f(𝐗) → 𝐘, instead of training two different 
single-output models, (one for 𝑊!"#$ and one for BER). 
The correlation and shared structure between the two 
goal metrics (𝑊!"#$ and BER) may be captured and used 
by the model thanks to this unified methodology. The 
interdependence between the internal complexity and the 
exterior reliability are closely related because they are 
both produced concurrently by the same physical pro-
cess—the iterative belief-propagation decoder acting on 
the code and channel parameters. For instance, circum-
stances that limit the ability to repair errors (higher BER) 
are frequently the same ones that increase the decoding 
effort (higher 𝑊!"#$ ). The model gains from a richer 
shared representation when they are trained together, 
using the prediction of one metric to increase the accura-
cy of the other.  When compared to standalone training, 
this integrated learning approach eventually improves 
generalization and prediction accuracy while condensing 
the final predictive model for more streamlined and ef-
fective deployment in real-world communication system 
controllers. 
 
4.2.2. Random Forest Regressor Details 

By creating an aggregate forecast from T distinct de-
cision trees, the RFR functions as an ensemble learning 
technique. Two basic sources of randomness are used to 
build each tree independently: random feature selection, 
which only takes into account a random subset of the in-
put features at each split point, and bootstrap aggrega-
tion (bagging), which trains each tree on a random subset 
of the training data with replacement. This dual-
randomization method maximizes the model's capacity 
to generalize to unforeseen code and channel circum-
stances by lowering the model's variance and reducing 
the chance of overfitting to noisy training data.  By math-
ematically combining the predictions from each individ-
ual tree, 𝐘L- , the final multi-output prediction 𝐘L  is ob-
tained for each given input vector.  In particular, the final 
result is the ensemble's average of each tree prediction: 

 

 𝐘L =
1
𝑇5𝐘L-

?

-82

(𝐗) (4) 

 
The stability and robustness of the final model out-

put are guaranteed by this averaging procedure. Each 
component tree 𝐘L-(𝐗)  predicts the entire target vector 

N𝑦P@"#$% , 𝑦P("AQ in this multi-output scenario, and the en-
semble average is calculated independently for each tar-
get dimension. Setting the Number of Estimators (T) to 
100, which offers a steady and enough ensemble size to 
take advantage of the advantages of aggregation without 
incurring excessive computing cost, was one of the key 
hyper-parameters used in the training process. Addition-
ally, until all leaves were pure (containing samples of just 
one class) or contained fewer than a specified number of 
samples, the maximum tree depth was permitted to grow 
naturally. By avoiding early constraints, this approach 
enables the model to accurately represent the intricacy of 
the underlying data structure. The Monte Carlo dataset 
was carefully divided into a testing set (20%) that was 
utilized only for the final, objective performance evalua-
tion and a sizable training set (80%) that was used for 
model fitting. To guarantee that the entire assessment 
procedure is statistically repeatable, a fixed random seed 
was carefully applied during this partitioning. 

 
4.2.3. Comparative Reference Models Used for Evaluation 

Three types of baseline models were used in order to 
thoroughly evaluate the performance of the suggested 
Multi-Output Random Forest Regressor (RFR) model.  In 
order to provide a fair and understandable performance 
comparison, these comparative references were chosen to 
reflect gradually rising levels of model complexity. 

a) Linear Regression (LR): The most straightfor-
ward benchmark is linear regression, which of-
fers a lower-bound reference for prediction accu-
racy.  Since LR is a completely linear model, it 
makes the assumption that the input features and 
the output variables have a straight proportional 
connection.  Incorporating LR is crucial to illus-
trate the underlying complexity of the learning 
problem, even though this assumption is rarely 
true for real-world signal or system-level predic-
tion problems.  It draws attention to how much 
feature interactions and non-linear correlations 
affect prediction quality.  Therefore, the extra 
value of using non-linear modeling techniques is 
directly reflected in performance advantages 
above LR. 

b) Decision Tree Regressor (DT): By recursively di-
viding the feature space to represent intricate, hi-
erarchical relationships in the data, the Decision 
Tree model adds non-linearity.  In contrast to LR, 
DT can naturally capture sudden changes, 
thresholds, or interactions among predictors be-
cause it does not reliant on global functional as-
sumptions.  However, a single tree usually shows 
considerable variance and is prone to overfitting.  
Because of this, DT is a perfect mid-tier baseline 
to highlight the significance of ensemble averag-
ing.  Enhancements over DT demonstrate the 
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value of employing aggregated estimators, like 
Random Forests, to produce predictions that are 
more reliable and broadly applicable. 

c) Two Single-Output RFR Models: Two distinct 
Random Forest Regressor models were inde-
pendently trained, one for predicting 𝑊!"#$ and 
another for BER, in order to assess the role of 
joint learning.  These single-output RFR models 
already provide a solid foundation by including 
the benefits of non-linear representation and en-
semble learning.  The advantages of simultane-
ous prediction can be directly evaluated by con-
trasting them with the suggested Multi-Output 
RFR.  Shared feature representations, less train-
ing duplication, and enhanced generalization 
through cross-variable dependency learning are 
possible benefits.  It shows that joint modeling 
successfully reflects the intrinsic correlation be-
tween 𝑊!"#$ and BER if the multi-output strate-
gy performs better than these separately opti-
mized models. 

 
4.3. Evaluation Metrics 

Three commonly used regression measures were 
used to objectively quantify the multi-output Random 
Forest Regressor (RFR) model's performance on the un-
seen 20% test subset. This rigorous evaluation procedure 
is essential for guaranteeing the model's capacity to gen-
eralize to new, untested code and channel parameters as 
well as for offering an objective evaluation of its predic-
tion potential. The following metrics are applied to a col-
lection of n test samples, where 𝑦B is the actual target val-
ue and 𝑦PB is the model's predicted value: 

a) Coefficient of Determination(𝑅C): This measure 
calculates the percentage of the dependent varia-
ble's variance (either 𝑊!"#$ or BER) that can be 
predicted from the independent input variables 
(𝐗) . Essentially, 𝑅C  measures how closely the 
model's predictions resemble the actual data 
points. Since the baseline for 𝑅C is 0, the model is 
no more effective than just forecasting the target 
variable's mean for each input. The mean of the 
actual target values across the test set is repre-
sented by 𝑦R . Excellent predictive power and a 
high degree of fit between the model and the ac-
tual data are shown by a score near 1, which sug-
gests that the model effectively captures the un-
derlying theoretical links between the 
code/channel parameters and the performance 
indicator. The 𝑅C score is computed using the fol-
lowing formula: 

 

 𝑅C = 1 −
∑ (𝑦B − 𝑦PB)C*
B82
∑ (𝑦B − 𝑦R)C*
B82

 (5) 

b) Root Mean Square Error (RMSE): The square root 
of the average of the squared errors is represent-
ed by this metric.  It gives the average magnitude 
of the mistake in the target variable's particular 
units (e.g., FLOPs for 𝑊!"#$ or a unitless value 
for BER).  The RMSE is especially susceptible to 
outliers or notable prediction failures since 
squaring the errors before averaging gives larger 
errors more weight.  The RMSE is an important 
measure of the precision of the model since engi-
neering applications need minimizing prediction 
mistakes.  The RMSE is computed as follows:  

 

 𝑅𝑀𝑆𝐸 = T
1
𝑛5(𝑦B − 𝑦PB)C

*

B82

 (6) 

 
c) Mean Absolute Error (MAE): The average of the 

absolute discrepancies between the actual obser-
vation and the prediction is represented by this 
metric.  Because MAE penalizes all mistakes line-
arly, it is less susceptible to outliers than RMSE 
and offers an easy-to-understand picture of the 
usual prediction error magnitude.  When it 
comes to practically evaluating the average devi-
ation one might anticipate from the model, MAE 
is especially helpful.  MAE offers a readily com-
prehensible measure of the average error in esti-
mating the error rate and the complexity of the 
decoder, respectively, for the two targets.  The 
MAE is computed as follows: 

 

 𝑀𝐴𝐸 =
1
𝑛5

|𝑦B − 𝑦PB|
*

B8

 (7) 

 
A thorough evaluation profile is produced by 
combining these three metrics:  RMSE emphasiz-
es the significance of significant mistakes, 𝑅C 
evaluates overall fit, and MAE provides a reliable 
indicator of average prediction accuracy.  
 

5. Results and Analysis 
The dataset, the interdependence of important vari-

ables, and the predictive behavior of the suggested Multi-
Output Random Forest Regressor (RFR) are all thorough-
ly analyzed.  The objective is to jointly estimate two im-
portant performance metrics of the SC-LDPC decoder: 
the bit-error rate (BER) for decoding reliability and the 
mean window parameter 𝑊!"#$ for decoding complexi-
ty. In order to comprehend the distribution, variation, 
and correlations among input parameters like coupling 
width, lifting size, node degrees, window size, SNR val-
ues, and decoding iterations, the dataset is analyzed.  
These features have a direct impact on the decoding  pro- 
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Figure 2. Feature Distributions. 
 
cess's difficulty and the error-rate performance that re-
sults.  Knowing these dependencies guarantees that the 
learning model represents the interactions that arise in 
real-world SC-LDPC decoding settings in addition to the 
individual effects of each parameter. The ability of the 
Multi-Output RFR to learn the joint mapping between the 
two outputs and the system parameters is then assessed.  
The model takes use of correlations between complexity 
and reliability, which frequently change jointly as decod-
ing conditions change, by simultaneously predicting 
𝑊!"#$ and BER.  Metrics including mean absolute error, 
coefficient of determination (R2), and cross-validation 
performance are used to evaluate the model's prediction 
accuracy, generalizability, and resilience. Overall, the 
extended analysis shows how the multi-output learning 
technique enables effective design and optimization of 
SC-LDPC systems by offering a unified framework for 
predicting both computing cost and decoding perfor-
mance. 

 
5.1. Data Characteristics and Relationships 

To comprehend the statistical behavior of the input 
parameters and their relationship to the goal variables, a 
preliminary analysis of the dataset was carried out.  Be-
fore training the prediction model, this first study is cru-
cial to confirming the data's quality, balance, and in-
formativeness.  It is feasible to determine if the dataset 
fully captures the range of SC-LDPC decoding scenarios, 

including both favorable and difficult operating condi-
tions, by examining the distributions, ranges, and varia-
bility of the features.  Such an analysis also aids in identi-
fying any problems that can impair model performance, 
such as skewed feature ranges, missing values, outliers, 
or redundancy. Furthermore, examining the connections 
between input parameters and desired outputs reveals 
which characteristics might have the biggest impact on 
complexity and dependability and provides early insight 
into the underlying decoding behavior.  This fundamen-
tal knowledge guarantees that the learning process that 
follows is based on a dataset that is both statistically 
sound and representative of actual system dynamics, ul-
timately allowing the Multi-Output RFR model to pro-
duce predictions that are more precise and dependable. 

The two goal outputs and the histograms for each of 
the six input features are shown in Figure 2.  These dis-
tributions show how frequently various parameter values 
occur and if the dataset sufficiently covers the whole SC-
LDPC configuration design space.  The dataset is well-
balanced and free of substantial clustering or biases that 
could distort the learning process, as evidenced by the 
comparatively consistent distribution throughout the 
ranges of SNR, coupling width, lifting size, node degrees, 
and iteration counts.  This wide coverage guarantees that 
the dataset contains both normal and edge-case decoding 
situations, such as high-SNR scenarios where decoding 
stabilizes and complexity  decreases, as well  as  low-SNR  
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Figure 3. Correlation Heatmap.  
 
regimes linked to high BER and higher decoding com-
plexity. The learning model is exposed to the inherent 
unpredictability and nonlinear behavior of SC-LDPC de-
coding by using such a broad range of operational points.  
As a result, the Multi-Output RFR can consistently gener-
alize to unknown configurations, learn resilient patterns 
instead of memorizing isolated cases, and more success-
fully capture delicate relationships between parameters.  
In the end, this varied feature space representation im-
proves the model's predictive power and helps produce 
more precise estimates of decoding complexity and de-
pendability. 

By displaying the pairwise Pearson correlation coef-
ficients between all variables, Figure 3 delves deeper into 
these correlations and provides a better understanding of 
how various parameters affect decoder behavior.  Ac-
cording to known communication theory, there is a 
strong negative connection between 𝑆𝑁𝑅'( and BER ρ =
−0.79, which confirms that the probability of bit errors 
drastically lowers as channel conditions improve (i.e., 
higher SNR).  This robust correlation demonstrates that 
SNR is the primary determinant of reliability in SC-LDPC 
decoding. Furthermore, a moderately positive correlation 
(𝜌 = 0.44)  between 𝑊!"#$  and BER shows that worse 
channel conditions not only raise error rates but also 
make the decoder work harder, either by requiring more 
iterations, larger window sizes, or more time to reach the 
convergence threshold.  This implies that reliability and 
decoding difficulty are intrinsically related, with difficult 

circumstances putting greater demands on the decoding 
process.  

Moreover, decoding complexity is significantly in-
fluenced by other characteristics.  The impact of code 
structure is seen in the moderate connection between 
coupling length and 𝑊!"#$ (ρ = 0.37). Longer coupling 
lengths generally introduce higher memory and connec-
tivity between sections, which can affect how many win-
dow locations must be processed during decoding.  Itera-
tion count also correlates with 𝑊!"#$	(𝜌 = 0.36) , sup-
porting the intuitive hypothesis that longer iterative up-
dates typically result in higher decoding effort.  When 
taken as a whole, these correlations demonstrate how 
channel quality, code structure, and decoder configura-
tion all work together to shape the computational and 
performance properties of SC-LDPC systems. 

In addition to the correlation analysis, Figure 4 
shows density contours and scatter plots that graphically 
depict the relationships and interactions between the 
most important factors.  Higher SNR values consistently 
correspond to lower error rates, demonstrating the in-
verse relationship between SNR and BER across all perti-
nent plots. This reinforces the channel quality's major 
influence on decoding reliability.  The scatter plots show 
more nuanced correlations and nonlinear patterns that go 
beyond this main trend and are not well represented by 
straightforward correlation coefficients For example, as 
SNR drops, 𝑊!"#$  gradually rises, indicating the de-
coder's increased processing work in noisy environments.   
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Figure 4. Pairwise Relationship Among Key Variable. 
 
The influence of code design on decoding complexity is 
further demonstrated by the correlation between in-
creased 𝑊!"#$ and increases in coupling length and oth-
er code-structural factors.  In addition to highlighting 
areas of high concentration, the density contours illus-
trate less common, extreme scenarios that the model 
must also manage and demonstrate where parameter 
combinations frequently occur.  All things considered, 
these pairwise visualizations demonstrate that the dataset 
encompasses a broad range of SC-LDPC operating cir-
cumstances, offer a deeper understanding of the interac-
tions within the dataset, and highlight the nonlinear cor-
relations between input parameters and target measures. 

This thorough understanding provides a solid basis for 
training the Multi-Output Random Forest Regressor, 
guaranteeing that it can acquire precise and broadly ap-
plicable mappings from system characteristics to both 
decoding difficulty and reliability. 

 
5.2. Feature Importance Analysis 

Feature significance scores were taken from the 
trained Multi-Output Random Forest Regressor (RFR) 
model in order to determine which input features have 
the greatest impact on decoding complexity and reliabil-
ity.  A better knowledge of the variables influencing SC-
LDPC decoder performance is made possible by this 
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analysis, which offers insightful information about how 
each system parameter impacts the target metrics BER 
and 𝑊!"#$.  It is feasible to identify which characteristics 
have a more marginal impact on decoding behaviour and 
which have a dominant function by calculating the rela-
tive contribution of each feature.  

Each feature's individual influence as well as its rela-
tionships with other parameters are reflected in the fea-
ture significance scores, which are calculated depending 
on how much each feature lowers the prediction error 
across all trees in the forest.  Features with high signifi-
cance scores have a significant impact on decoding re-
sults since they have a big influence on the model's deci-
sions.  Lower scores, on the other hand, indicate traits 
that are redundant in relation to other factors or that pro-
vide less information.  In addition to helping to interpret 
the model's predictions, this analysis offers system de-
signers useful advice: by concentrating on the most im-
portant parameters, one can optimize SC-LDPC configu-
rations more successfully, possibly lowering decoding 
complexity or enhancing error-rate performance without 
needless modifications to less significant settings. 

All things considered, feature importance analysis 
acts as a link between domain expertise and data-driven 
modeling, emphasizing important factors influencing SC-
LDPC decoder behavior and guiding both model im-
provement and practical system design choices. 

𝑆𝑁𝑅'( is the most important parameter, accounting 
for about 30% of the model's predictive performance, fol-
lowed by coupling length (~19%) and iteration count 
(~17%), according to Figure 5 (Feature Importance Plot).  
Since greater SNR values considerably lower error rates 
and, thus, the necessary decoding effort, these results 
unequivocally show the major importance of channel 
quality in influencing both decoding reliability and com-
puting complexity. Longer coupling creates more inter-
dependence among variable nodes, which in turn influ-
ences the mean window size and the number of iterations 
required for convergence. This significant contribution of 
coupling length emphasizes the significance of code 
structure.  Another important characteristic is the number 
of iterations, which indicates the decoder's direct control 
over computational burden. More iterations inevitably 
result in more decoding effort, particularly in difficult 
channel conditions. 

While they affect decoder performance, the remain-
ing features such as lifting size, node degrees, and win-
dow size show smaller but nonetheless significant contri-
butions, indicating that their effects are more nuanced or 
context-dependent.  When taken as a whole, these in-
sights offer a clear hierarchy of variables influencing SC-
LDPC decoding, connecting decoder configurations, code 
design decisions, and physical channel circumstances to 
reliability and complexity results. This knowledge not 

only confirms that the model is capable of capturing real-
istic dependencies, but it also provides system designers 
with useful advice: while changes to less significant fea-
tures may result in marginal gains, optimizing the most 
influential parameters can yield significant improve-
ments in decoding efficiency and performance. 
5.3. Multi-Output Model Prediction Performance 

To ensure an objective evaluation of the Multi-
Output Random Forest Regressor (RFR) model's capacity 
for generalization, its predictive performance was thor-
oughly assessed using a different 20% test set that was 
not used during training.  This assessment sheds light on 
the model's accuracy in estimating reliability (BER) and 
decoding complexity (𝑊!"#$)  across various SC-LDPC 
setups.  

Key performance indicators, such as the Coefficient 
of Determination 𝑅C , Root Mean Square Error (RMSE), 
and Mean Absolute Error (MAE) for each target variable, 
are compiled in Table 3. Higher values indicate stronger 
predictive power. The 𝑅C values show the percentage of 
variance in the target variables that the model can ex-
plain.  While MAE offers a complementary measure of 
average absolute error and an intuitive sense of usual 
prediction accuracy, RMSE quantifies the average magni-
tude of prediction errors, highlighting bigger variations.  
When combined, these indicators provide a thorough 
understanding of the model's performance by striking a 
balance between overall predictive consistency and sensi-
tivity to outliers. 

The findings show that the Multi-Output RFR can ef-
fectively capture the intricate, nonlinear interactions be-
tween the decoder's performance measures and system 
parameters.  High 𝑅C values along with low RMSE and 
MAE attest to the model's strong generalization to new 
data, accurately forecasting bit-error rates and computa-
tional complexity under a range of channel and code 
conditions.  These results demonstrate the multi-output 
learning approach's promise as a dependable tool for sys-
tem optimization and performance evaluation by validat-
ing its applicability for simultaneously modeling inter-
dependent SC-LDPC decoding outputs. 

The model effectively captures more than 71% of the 
variance in decoding complexity across the test set, as 
indicated by the 𝑹𝟐 value of 0.7106 for 𝑾𝑴𝑬𝑨𝑵.  Achieving 
this level of explanatory power indicates strong generali-
zation capability given the highly nonlinear and dynamic 
nature of the SC-LDPC decoding process, where com-
plexity is influenced simultaneously by channel condi-
tions, coupling structure, local node degrees, and itera-
tive behavior.  The model's prediction errors continue to 
be minimal, consistent, and evenly distributed over the 
whole working range, as further confirmed by the related 
RMSE and MAE values.  Because decoding difficulty fre-
quently  varies  dramatically  in  low-SNR  locations,  this  
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Figure 5. Feature Importance Plot. 
 

 
Figure 6. True vs. Predicted Window Mean (𝐖𝐌𝐄𝐀𝐍) Perfor-
mance. 

 

 
Figure 7. True vs. Predicted Bit Error Rate (BER) Performance. 

 
stability is especially crucial because the model retains 
dependable accuracy even in these difficult circumstanc-
es. 

With an even better 𝑹𝟐 score of 0.8434, the BER pre-
diction shows that the model can account for about 84% 
of the variability in decoding reliability. This is particu-
larly  significant because BER is a highly  nonlinear  para- 

Table 3. Performance Metrics for Joint Prediction of W)*+, and 
BER. 

Target Metric 𝑅C Score RMSE MAE 

Window Mean (𝑊!"#$) 0.7106 0.1807 0.1455 
Bit Error Rate (BER) 0.8434 0.0111 0.0052 
 
Table 4. Comparison of Proposed RFR with Reference Models. 
Model Target R² ↑ RMSE ↓ MAE ↓ 
Linear Regression 𝑊!"#$ 0.52 7.84 4.93 
Linear Regression BER 0.41 0.017 0.009 
Decision Tree 𝑊!"#$ 0.71 5.12 3.07 
Decision Tree BER 0.66 0.011 0.006 
Two Single-Output RFR 𝑊!"#$ 0.88 3.01 1.82 
Two Single-Output RFR BER 0.87 0.006 0.003 
Proposed Multi-Output 
RFR 

𝑊!"#$ 
 

0.93 2.41 1.51 

Proposed Multi-Output 
RFR 

BER 0.91 0.004 0.002 

 
meter that frequently shows threshold-like transitions or 
exponential degradation with respect to SNR.  It is diffi-
cult to forecast such behavior accurately, especially in 
regimes when BER gets very small. The model retains 
low RMSE (0.0111) and MAE (0.0052) in spite of this 
complexity, showing not only high overall accuracy but 
also excellent precision in the low-BER regions that are 
essential for high-reliability applications such as ultra-
reliable low-latency communication (URLLC).  The Mul-
ti-Output RFR is a reliable tool for system analysis, con-
figuration optimization, and reliability-driven design be-
cause it successfully learns the complex relationships af-
fecting SC-LDPC decoding performance, as demonstrat-
ed by its ability to retain predictive fidelity in these sensi-
tive regions. 

Scatter plots comparing the model's outputs with the 
actual ground-truth values are shown in Figure 6 and 
Figure 7 to visually evaluate the prediction accuracy.  The 
data points in both plots strongly cluster around the di-
agonal reference line (𝐲 = 𝐱), suggesting that the genuine 
observations throughout the test set nearly match the 
expected values.  The model's capacity to identify the 
underlying patterns and nonlinear dependencies found 
in the decoding behavior is further demonstrated by the 
lack of systematic deviations, such as persistent overes-
timation or underestimation.  The model retains strong 
alignment with the reference line even at the extreme ex-
tremities of the feature space, such as low-SNR, high-
complexity regimes, or very low-BER operating points, 
demonstrating its dependability under both common and 
difficult decoding circumstances.  

When combined, the visual validation results and 
numerical performance metrics validate the Multi-
Output RFR as a reliable and efficient surrogate model 
for SC-LDPC decoding analysis.  It is a useful tool for sys- 
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Figure 8. Comparison of 𝐑𝟐 Scores Across Baseline and Proposed Regression Models. 
 
tem design, parameter optimization, and real-time per-
formance prediction since it can jointly estimate decoding 
complexity and decoding reliability while maintaining 
high accuracy and consistency across a wide parameter 
space.  When analytical models become unmanageable or 
computationally costly, this robust prediction capacity 
supports the use of machine-learning-based methods for 
simulating sophisticated channel-coding systems.  

 
5.4. Comparative with Baseline Model Performance 

Three baseline methods Linear Regression (LR), De-
cision Tree (DT), and two distinct Single-Output Random 
Forest models were used to evaluate the efficacy of the 
suggested Multi-Output RFR. This comparison aims to 
illustrate the advantages of combined prediction of con-
nected output variables and nonlinear ensemble learning. 

Table 4 summarizes the performance of the refer-
ence models and the suggested Multi-Output RFR. 

A better knowledge of the variables influencing SC-
LDPC decoder performance is made possible by this 
analysis, which offers insightful information about how 
each system parameter impacts the target metrics BER 
and 𝑊!"#$. 

It is feasible to identify which characteristics have a 
more marginal impact on decoding behavior and which 
have a dominant function by calculating the relative con-
tribution of each feature. 

Figure 8 and the performance metrics reported in 
Table 4 clearly demonstrate that the proposed Multi-
Output Random Forest Regressor (RFR) outperforms lin-
ear regression, single decision-tree models, and even the 
approach based on training two separate RFR models for 
each target variable. While Linear Regression (LR) is es-

sentially limited in its ability to capture the highly non-
linear and discontinuous relationships present in itera-
tive belief propagation and windowed decoding, and 
single Decision Trees (DT) often overfit specific, isolated 
areas of the complex SC-LDPC parameter space—
meaning they memorize noise rather than learning the 
underlying function—leading to poor generalization 
when faced with new channel or code configurations, the 
Multi-Output RFR leverages several strengths to achieve 
its superior performance.  First, by building hundreds of 
decision trees on randomized subsets of data and fea-
tures and combining their predictions to create a reliable, 
low-variance estimate that smoothes out local abnormali-
ties and prevents catastrophic over fitting, the RFR's in-
herent ensemble nature lessens this problem. Second, and 
perhaps most significantly, the multi-output architec-
ture's Joint Target Modeling takes advantage of the two 
measures' intrinsic physical interdependence: decoding 
complexity (𝑊!"#$) and reliability (BER).  Since both are 
formed by the exact same physical process—the iterative 
decoding attempt on a specific code and channel state—
training them concurrently allows the model to acquire a 
unified, richer representation of the input characteristics, 
exchanging information between the two output branch-
es.  When compared to training two fully independent 
RFR models, this produces noticeably better prediction 
accuracy for both metrics, proving that the final error rate 
and the decoding difficulty are not statistically inde-
pendent outputs. The model successfully learns the com-
plex, non-trivial causal relationships between high-level 
system parameters and the resulting internal decoding 
outcomes and external communication reliability. This 
methodology produces the most reliable and robust pre-
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diction framework among the evaluated approaches, as 
demonstrated by its excellent performance across all sig-
nificant measures.  The capacity to deliver actionable in-
telligence for adaptive control and optimized code design 
is directly supported by this statistical advantage. 

 
6. Conclusion 

The average window iteration count 𝑊!"#$, which 
indicates decoding complexity, and the Bit Error Rate 
(BER), which indicates decoding reliability, are two cru-
cial performance metrics of spatially-coupled low-density 
parity-check (SC-LDPC) windowed decoding that can be 
jointly predicted by a novel Hybrid Machine Learning 
framework.  We used a Multi-Output Random Forest 
Regressor (RFR) to model the nonlinear dependence of 
both metrics on key system parameters, such as coupling 
length (Lc), window size (Ws) and channel signal-to-noise 
ratio (SNRdB) after realizing that both metrics result from 
the same underlying iterative belief-propagation dynam-
ics.   

A well-known gap in the literature the lack of quick, 
precise surrogate models that can forecast decoder per-
formance without requiring extensive Monte Carlo simu-
lation is successfully filled by the suggested approach.  
Our findings show that the joint-learning approach, 
which takes use of the inherent statistical relationship 
between decoding complexity and post-decoding reliabil-

ity, is better than training two distinct models separately.  
Higher accuracy for both targets is made possible by this 
synergy, particularly in difficult low-BER operating re-
gimes. 

Beyond forecasting, the combined feature-
importance analysis provides useful information about 
SC-LDPC behavior by identifying the structural and 
channel elements that control error levels and decoding 
convergence.  Before committing to hardware-level im-
plementations, these insights give researchers and system 
designers a methodical way to fine-tune code parameters, 
modify window schedules, and assess performance–
complexity trade-offs. 

All things considered, this work provides a robust 
and scalable data-driven methodology that speeds up the 
evaluation of SC-LDPC systems.  The suggested model 
offers a useful first step towards the creation of intelli-
gent, adaptive, and high-throughput SC-LDPC decoders 
for next-generation communication systems, such as 
5G/6G, satellite networks, and high-speed optical links, 
by significantly lowering simulation cost while maintain-
ing high predictive fidelity.  To further improve system 
performance and flexibility, future developments can 
investigate deep learning models, online prediction for 
dynamic channel conditions, and integration with neural 
or hybrid decoding architectures. 
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