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Abstract: Modern low-latency communication systems increasingly rely on spatially coupled low-density
parity-check (SC-LDPC) codes combined with windowed decoding (WD) to achieve high reliability with
reduced latency and memory requirements. However, evaluating the intrinsic trade-off between decoding
complexity and error performance typically measured by the average window iteration count (Wyg4y) and
bit error rate (BER) still depends on computationally intensive Monte Carlo simulations, which limits rap-
id system optimization and real-time design exploration. To address this limitation, this paper proposes a
hybrid machine learning framework for the joint, non-iterative prediction of Wyg4y and BER using a sin-
gle set of code and channel parameters. A high-fidelity dataset is generated through extensive SC-LDPC
windowed decoding simulations across varying window sizes, coupling lengths, and signal-to-noise ratio
(SNR) conditions. Based on this dataset, a multi-output Random Forest Regressor is trained to exploit the
shared underlying decoding dynamics that govern both computational complexity and decoding reliabil-
ity. The proposed model achieves accurate simultaneous prediction of Wyg4y and BER, demonstrating
strong generalization performance while significantly reducing system evaluation time compared to con-
ventional simulation-based approaches. Feature-importance analysis further reveals the dominant influ-
ence of channel quality and coupling structure on both decoding effort and error performance. These re-
sults indicate that the proposed framework provides an effective surrogate modeling tool for fast design-
space exploration and informed performance—complexity trade-off analysis. The methodology enables
practical optimization of high-throughput SC-LDPC decoders and supports the development of adaptive
and resource-efficient communication systems.

Keywords: Hybrid Machine Learning; SC-LDPC Codes; Windowed Decoding (WD); Random Forest Re-
gressor (RFR); Joint Prediction; Bit Error Rate (BER); Decoding Complexity; Window Mean (Wjgay); Sur-
rogate Modeling.
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1. Introduction

Low-density parity-check (LDPC) codes have played
a fundamental role in modern channel coding theory
since their introduction by Gallager [1], with their near-
capacity performance later justified within Shannon’s
information-theoretic framework [2]. Building upon these
foundations, spatially coupled LDPC (SC-LDPC) codes
have emerged as a powerful class of error-correcting

codes, exhibiting the threshold saturation phenomenon
that enables iterative belief-propagation (BP) decoding to
approach maximum-a-posteriori (MAP) performance as
the coupling length increases [3]-[5]. Owing to these
properties, SC-LDPC codes are widely regarded as strong
candidates for high-reliability communication systems,
including optical networks, satellite links, and high-
throughput wireless applications [6], [7].
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Despite their excellent asymptotic performance,
practical implementation of SC-LDPC codes introduces
significant challenges. Conventional full-chain BP decod-
ing incurs high computational complexity, large memory
requirements, and increased latency, particularly for long
coupled chains [8], [9]. To mitigate these limitations,
windowed decoding (WD) has been proposed as an effec-
tive low-latency alternative that restricts iterative decod-
ing to a sliding window over the coupled graph [10]. By
limiting the decoding scope, WD significantly reduces
memory usage and latency while preserving near-
threshold error-correction performance [3], [6]. However,
this advantage comes at the cost of an inherent trade-off
between decoding complexity and error-rate perfor-
mance, which is influenced by window size, coupling
parameters, and channel conditions [11]-[13].

Accurately  characterizing this  performance—
complexity trade-off remains a major challenge in SC-
LDPC system design. Performance evaluation of win-
dowed decoding typically relies on extensive Monte Car-
lo simulations to estimate metrics such as bit-error rate
(BER) and decoding effort, particularly in low-error-rate
regimes [14]. These simulations are computationally ex-
pensive and time-consuming, limiting rapid design-space
exploration, hardware optimization, and real-time system
adaptation. As a result, there is a growing need for effi-
cient predictive tools that can estimate decoder behavior
without executing full iterative decoding.

In parallel, machine learning (ML) techniques have
gained increasing attention in the context of LDPC and
SC-LDPC decoding. Prior works have explored ML-
assisted decoding strategies, including near-ML decoding
algorithms, reinforcement-learning-based scheduling,
and reliability-driven decoding enhancements [15]-[18].
Reduced-complexity —decoding methods, such as
weighted bit-flipping and reliability-based approaches,
have also been investigated to alleviate computational
burden while maintaining acceptable error performance
[19]-[21]. While these approaches focus on improving the
decoding process itself, they still require iterative decod-
ing execution and do not address the problem of predict-
ing decoder behavior at a system level.

Motivated by this gap, this work proposes a hybrid
machine learning framework for the joint, non-iterative
prediction of two key performance metrics in SC-LDPC
windowed decoding: the average window iteration count
(window mean), which reflects decoding complexity, and
the resulting bit-error rate (BER), which reflects decoding
reliability. By leveraging a multi-output Random Forest
Regressor trained on a high-fidelity dataset generated via
controlled Monte Carlo simulations, the proposed
framework exploits the intrinsic correlation between de-
coding complexity and error performance. This unified
learning approach enables accurate surrogate modeling

of SC-LDPC decoder behavior across diverse system con-
figurations, significantly reducing reliance on computa-
tionally expensive simulations.

The main contributions of this work are summarized

as follows:

e A joint surrogate modeling framework for SC-
LDPC windowed decoding that simultaneously
predicts decoding complexity and error perfor-
mance.

¢ A multi-output machine learning approach that
captures the inherent dependence between win-
dow mean and BER, outperforming independent
single-output prediction models.

e A comprehensive evaluation and feature-
importance analysis that provides insight into
how system parameters influence decoding be-
havior, offering practical guidance for SC-LDPC
design and optimization.

The rest of this paper is organized as follows: Section

2 reviews recent advances in SC-LDPC codes and decod-
ing strategies, including windowed decoding, high-
throughput hardware implementations, reduced-
complexity decoding algorithms, and machine-learning-
based optimization approaches. Section 3 presents the
figure illustrating the methodological workflow. Section
4 presents the proposed hybrid methodology, describing
the SC-LDPC system model, dataset generation process,
multi-output Random Forest Regressor architecture, and
evaluation metrics. Section 5 reports and analyzes the
simulation results, including feature importance analysis
and comparative performance evaluation against baseline
models. Finally, Section 6 concludes the paper by sum-
marizing the main findings and outlining potential direc-
tions for future research.

2. Background and Related Work

This section reviews prior research relevant to spa-
tially coupled LDPC (SC-LDPC) codes, windowed decod-
ing strategies, reduced-complexity decoding methods,
and machine-learning-assisted approaches. The focus is
on technical developments and limitations that motivate
the proposed surrogate modeling framework.

2.1. Spatially Coupled LDPC Codes and Windowed De-
coding

SC-LDPC codes extend conventional LDPC con-
structions by introducing structured coupling between
adjacent code blocks, which significantly improves itera-
tive decoding thresholds through the phenomenon of
threshold saturation [3]-[5]. Analytical and design-
oriented studies have demonstrated that spatial coupling
enables belief-propagation (BP) decoding to achieve near-
optimal performance under a wide range of channel con-
ditions [3], [5]. These properties have been explored for
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both binary and non-binary SC-LDPC codes, highlighting
the robustness of spatial coupling across different code
structures [3], [22].

To address the high latency and memory require-
ments of full-chain BP decoding, windowed decoding
(WD) has been proposed as a practical alternative [10].
WD restricts message passing to a sliding window of
fixed size, allowing partial decoding of the coupled graph
while maintaining strong error-correction performance.
Several works have analyzed the impact of window size,
coupling parameters, and decoding schedules on the
convergence behavior and error performance of WD [10],
[12], [13]. Design-oriented studies have further examined
how window size and coupling structure influence finite-
length performance and decoding stability [5], [7].

2.2. Decoding Complexity and Performance Trade-Offs

A fundamental challenge in LDPC and SC-LDPC
decoding is the trade-off between decoding complexity
and error performance. Information-theoretic analyses
have established lower bounds on decoding effort and
highlighted how graph structure and iterative decoding
dynamics influence computational complexity [8], [9].
Practical studies have shown that decoding complexity
per iteration and total decoding effort are strongly de-
pendent on channel conditions and code parameters [8],
[11].

For windowed decoding, this trade-off becomes
more pronounced due to localized decoding and inter-
window dependencies. Error propagation across window
boundaries and premature stopping can significantly de-
grade performance if decoding parameters are not care-
fully chosen [12], [13]. Adaptive window scheduling and
variable window strategies have been proposed to miti-
gate these effects and improve robustness under chal-
lenging channel conditions [23], [24]. However, these ap-
proaches still rely on iterative decoding execution and
require extensive simulation to evaluate their perfor-
mance.

2.3. Reduced-Complexity Decoding Algorithms

To alleviate the computational burden of iterative BP
decoding, a variety of reduced-complexity decoding al-
gorithms have been proposed. Weighted bit-flipping
(WBF) and its variants offer simplified decoding by selec-
tively updating unreliable bits, achieving lower complex-
ity at the cost of some performance degradation [21].
Hardware-oriented implementations have demonstrated
that such approaches can significantly reduce computa-
tional load and power consumption in practical decoders
[17], [19].

Reliability-driven methods, including BP-LED and
related algorithms, further reduce complexity by selec-
tively erasing or reprocessing unreliable symbols during

decoding [18]. These techniques have been analyzed un-
der various channel models, including AWGN, and have
shown improved performance—complexity trade-offs
compared to conventional BP decoding [18], [20]. While
effective, these methods still operate within the decoding
loop and do not eliminate the need for iterative message
passing.

2.4. Machine Learning in LDPC and SC-LDPC Decoding

Recent years have seen growing interest in applying
machine learning to LDPC decoding. ML-based ap-
proaches have been explored to approximate near-
maximum-likelihood decoding, optimize message-
passing schedules, and enhance decoder robustness [15],
[16]. Reinforcement learning has been employed to learn
adaptive decoding policies for sparse graph-based codes,
demonstrating performance improvements over fixed
scheduling strategies [16].

In addition to decoder-centric approaches, ML tech-
niques have been investigated for performance modeling
and system-level analysis. However, existing studies
primarily focus on improving decoding algorithms rather
than predicting decoding outcomes. As a result, there is
limited work on surrogate models that estimate decoding
complexity and error performance directly from system
parameters, without executing full iterative decoding.
This gap becomes particularly significant for SC-LDPC
windowed decoding, where decoding complexity and
reliability are intrinsically coupled and expensive to
evaluate through simulation.

2.5. Research Gaps

There are still a number of significant gaps in the
present literature, despite the substantial advancements
mentioned above. Few studies attempt to jointly estimate
decoding complexity and error-rate performance from
system parameters, despite the fact that several discuss
the hardware complexity, finite-length behavior, and de-
coding performance of SC-LDPC systems. The majority
of current efforts concentrate on enhancing the decoding
process itself, whether through learning-based decoders,
algorithmic improvements, reliability-based corrections,
or scheduling optimizations. However, they do not offer
prediction tools that estimate decoder behavior prior to
carrying out complete iterative decoding.

Despite growing in popularity, machine-learning-
assisted decoding has mostly focused on improving mes-
sage passing or optimising decoding schedules rather
than creating surrogate models for system-level assess-
ment. This creates a gap in approaches that do not re-
quire computationally demanding Monte Carlo simula-
tions in order to quickly estimate performance indicators
such as BER or average iteration count. Related studies
have demonstrated the effectiveness of data-driven sur-
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Figure 1. Methodological workflow illustrating the research
stages used to develop and evaluate the proposed hybrid ma-
chine learning framework.

rogate modeling frameworks for system-level perfor-
mance estimation, motivating the methodology adopted
in this work [25].

Via building a multi-output Random Forest model
trained on a large dataset produced via controlled SC-
LDPC simulations, the current study directly overcomes
these shortcomings. The suggested surrogate model re-
flects the associated behavior of decoding difficulty and
reliability by forecasting both the average number of iter-
ations per window Wy g,y and the consequent BER. Fur-
ther information about how window size, SNR, coupling
parameters, and other design elements interact to affect
decoder performance may be found in the accompanying
feature-importance study. Thus, our predictive approach
offers a useful substitute for conventional full-scale simu-
lation-based evaluation and is a major step towards data-
driven design and optimization of SC-LDPC systems.

3. Research Stages

This study follows a structured, multi-stage research
workflow designed to ensure transparency, reproducibil-
ity, and systematic development of the proposed hybrid

machine learning framework. The overall methodology
progresses from system modeling and data generation to
predictive modeling and performance evaluation. Each
stage builds logically upon the previous one, enabling a
clear traceability between the problem formulation and
the final outcomes.

Figure 1 illustrates the complete methodological
workflow adopted in this work, highlighting the sequen-
tial research stages used to obtain the reported results.

3.1. Stage 1: System Modeling and Parameter Definition

The research begins with the definition of the SC-
LDPC communication system under an AWGN channel.
Key code, decoding, and channel parameters such as
window size, coupling length, lifting factor, maximum
iterations, and signal-to-noise ratio (SNR) are specified to
represent realistic decoding scenarios under windowed
belief propagation (BP).

3.2. Stage 2: Monte Carlo Simulation and Data Generation

Extensive Monte Carlo simulations are performed
using windowed decoding to emulate practical SC-LDPC
decoder behavior. For each configuration of system pa-
rameters, decoding is executed until predefined statistical
stopping criteria are satisfied, ensuring reliable estima-
tion of performance metrics.

3.3. Stage 3: Performance Metric Extraction
From each simulation run, two complementary per-
formance metrics are extracted:

e  Window Mean (W), representing the average
number of decoding iterations per window and
serving as a measure of decoding complexity.

e Bit Error Rate (BER), representing decoding reli-
ability and communication performance.

These metrics jointly characterize the internal com-
putational effort and external error performance of the
decoder.

3.4. Stage 4: Dataset Construction

The simulation outputs are aggregated to form a la-
beled dataset consisting of input feature vectors (system
and channel parameters) and corresponding output tar-
gets (Wyganv and BER). This dataset serves as the ground
truth for training and validating the machine learning
models.

3.5. Stage 5: Machine Learning Model Training

The dataset is partitioned into training and testing
subsets. A multi-output Random Forest Regressor is then
trained to jointly learn the nonlinear relationship between
the input parameters and both output metrics. Joint
learning enables the model to exploit the intrinsic correla-
tion between decoding complexity and error perfor-
mance.
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Table 1. Input Features for the Multi-Output Regression Model.

Parameter Symbol Description Value/
Range

Lifting L, Determines the degree {1,2,4,8}

Factor of code coupling and
resulting block length.

Window W Size of the decoding [8,64]

Size window (in coupled (Integer)
blocks).

Code Rate R, Ratio of information 0.5
bits to total bits. (Fixed)

Channel ~ SNR;z  Signal-to-Noise Ratio of [1.5,4.0]

SNR the AWGN channel. dB

Max Itera- I Maximum iterations al- 50

tions lowed for the BP de- (Fixed)
coder.

Coupling Cr Degree of coupling be- 3

Factor tween protographs. (Fixed)

3.6. Stage 6: Model Evaluation and Validation

The trained model is evaluated on unseen test data
using standard regression metrics, including the coeffi-
cient of determination (R?), root mean square error
(RMSE), and mean absolute error (MAE). This stage veri-
fies the model’s generalization capability and prediction
accuracy across diverse SC-LDPC configurations.

3.7. Stage 7: Outcome Analysis

Finally, the trained surrogate model is analyzed to
assess prediction performance and extract insights into
the influence of system parameters on decoding complex-
ity and reliability. These outcomes demonstrate the effec-
tiveness of the proposed framework as a fast and accu-
rate alternative to computationally expensive Monte Car-
lo simulations.

4. Proposed Hybrid Methodology

The creation of a data-driven model that can concur-
rently forecast two crucial performance metrics —decoder
complexity (Wygay) and error rate (BER)— from a single
set of code and channel parameters forms the basis of this
study. The system model, the procedure for creating the
dataset, the multi-output regression model's design, and
the metrics utilized for thorough assessment are all de-
scribed in this part.

4.1. SC-LDPC System Model and Data Synthesis

The method is based on a simulated communication
system that employs a spatially-coupled low-density par-
ity-check (SC-LDPC) code with a fixed-rate (R, = 0.5)
additive white gaussian noise (AWGN) channel. The de-
coding process uses the traditional Windowed Decoding
(WD) technique, which is based on the Belief Propagation

(BP) algorithm, in accordance with the specified system
model.

Input Features (X) have six fundamental, non-
redundant factors make up the machine learning model's
input vector X which collectively define the channel state,
the decoding process, and the code structure. Table 1 lists
these attributes together with the sampling ranges used
to generate the dataset.

4.1.1 Decoding Process and Message Passing

In order to minimize time at the expense of error
correcting capability, the WD process applies the iterative
belief update to a sliding window of size W throughout
the connected chain. Passing messages between variable
nodes (v) and check nodes (c) on the Tanner Graph rep-
resentation of the code is the main function of this proce-
dure, which is a specific application of Factor Graph de-
coding. Each node separately changes its belief about
whether a bit is accurate or whether a parity check is sat-
isfied. This repeated, local information exchange is the
core of the decoding process. The recursive formula pro-
vides the variable node update equation, which estab-
lishes the message m,(flc delivered from variable node n
to check node c at iteration t.

t -
m7(1—)>c = Nn + Z mfu—lw (1)

a’eH()\c

The channel log-likelihood ratio (LLR), which is the
first extrinsic information regarding the reliability of the
received bit straight from the noisy channel, is represent-
ed here by N,,. Before any decoding is done, this LLR is
essentially a measure of the belief state. The set of all
check nodes linked to the variable node (v), omitting the
check node (c), is denoted as H(v)\c. The summing term
compiles all of the extrinsic data (parity constraints) that
were obtained from every other check node in the pre-
ceding iteration (t — 1). By continuously integrating the
noisy channel evidence with the structural constraints
imposed by the code, this iterative process guarantees
that the decision on a bit's value is refined. This leads to
an improved estimation with each subsequent iteration
until a valid code word is found or a maximum iteration
limit is reached. A practical implementation element that
is essential for high-throughput systems is the use of the
sliding window (W), which reduces latency and memory
use by limiting the computationally demanding belief
propagation to a smaller, localized portion of the received
data.

Output Targets (Y) shows for a given input X, the
multi-output model is intended to generate a two-
dimensional output vector Y = [Wyg4n, BER]. These met-
rics measure both the outward communication dependa-
bility and the internal computing cost at the same time.
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Table 2. summarizes the configuration and hyperparameter
settings of the machine learning models used to evaluate the

proposed Wy g4y and BER prediction framework.

Category

Description / Setting

Learning Paradigm
Prediction Strategy

Target Metrics
Primary Model

Baseline Models

Input Features

Number of Trees
Tree Depth

Feature Selection per

Supervised regression

Joint (multi-output) predic-
tion

Window Mean (Wyg4y), Bit
Error Rate (BER)
Multi-Output Random For-
est Regressor

Linear Regression (LR), De-
cision Tree Regressor (DT),
Single-Output Random For-
est Regressors

Window  size, coupling
length, lifting factor, channel
SNR (code rate and max itera-
tions fixed)

100

Grown until purity or mini-
mum sample threshold
Random subset of input fea-

Split tures

Bootstrap Sampling Enabled

Training/Test Split 80% / 20%

Random Seed Fixed for reproducibility

Optimization Criteri- Mean Squared Error (MSE)

on

Evaluation Metrics R2, RMSE, MAE

Prediction Mode Non-iterative surrogate es-
timation

a. Window Mean(Wyg4y): This represents the av-
erage number of iterations carried out through-
out all decoding windows (M) during a simula-
tion run. It is a direct indicator of the decoder's
computing effort and acts as the main internal
complexity metric. Increased processing time
and power consumption are indicated by a
greater Wy g,y value, which is usually necessary
when the channel quality is low or the code is
running close to its performance limit. This is
how the metric is computed.

1 M
Wypan = lej 2
j=1

Where [; denotes how many iterations were car-
ried out on the j** decoding window. The metric
offers a reliable, empirical evaluation of the dy-
namic operational load of the decoder, which
varies according to the degree of channel im-

pairments, by averaging this number of itera-
tions.

b. Bit Error Rate (BER): This is the proportion of
wrongly decoded bits N, to all sent infor-
mation bits Nyypq;. It controls the total quality of
service and is the crucial external indicator of
communication dependability. After the decod-
ing process is finished, it indicates the system's
ultimate failure rate, and its prediction is crucial
for system design and specification. The BER is
computed as follows:

Nerr

BER =

)

total

4.1.2. Dataset Generation

Extensive Monte Carlo simulations were used to
create a high-fidelity training dataset of 2,000 distinct la-
beled samples. The most resource-intensive stage is creat-
ing this dataset, but it is essential to ensuring the surro-
gate model's predicted accuracy. Every simulation point
was run under strict termination requirements to guaran-
tee statistical stability for the low error rate labels—a
need for accurately characterizing system performance at
realistic operating points. In particular, the simulation
was run for a specific set of X parameters until it reached
a minimal criteria of either 100 frame errors or 107 de-
coded bits. This extensive simulation depth reduces the
possibility of noise and bias in the training labels by en-
suring that even extremely small error probabilities are
predicted with a high degree of certainty. The robust
multi-output regression model is trained and validated
using this synthetic dataset, which serves as the essential
ground truth.

4.2. Multi-Output Regression Model Architecture

The Random Forest Regressor (RFR) algorithm,
which was deliberately selected for its resilience in man-
aging the intricate, non-linear, and frequently discontin-
uous relationships typical of contemporary coding sys-
tem performance measures, is the basis for the Multi-
Output Regression Model used in the suggested frame-
work. REFR is a strong and dependable option for non-
parametric regression because it can implicitly handle
complex feature interactions without requiring explicit
modeling and because it is relatively insensitive to fea-
ture scaling and possible outliers in the Monte Carlo da-
taset.

The machine learning models were configured to
jointly predict decoding complexity and decoding relia-
bility, represented by the window mean (Wyz,y) and bit
error rate (BER), respectively. A multi-output Random
Forest Regressor was selected as the primary model due
to its ability to capture nonlinear relationships and
shared dependencies between the two target metrics.
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Baseline models, including linear regression, decision
tree regression, and independent single-output Random
Forest models, were used for comparative evaluation. In
Table 2, all models were trained using the same input
feature set and data partitioning to ensure a fair and con-
sistent performance comparison.

4.2.1. Model Justification

Theoretically, it is crucial to use a single multi-
output model, f(X) — Y, instead of training two different
single-output models, (one for Wyz,y and one for BER).
The correlation and shared structure between the two
goal metrics (Wy 4y and BER) may be captured and used
by the model thanks to this unified methodology. The
interdependence between the internal complexity and the
exterior reliability are closely related because they are
both produced concurrently by the same physical pro-
cess—the iterative belief-propagation decoder acting on
the code and channel parameters. For instance, circum-
stances that limit the ability to repair errors (higher BER)
are frequently the same ones that increase the decoding
effort (higher Wyg4y). The model gains from a richer
shared representation when they are trained together,
using the prediction of one metric to increase the accura-
cy of the other. When compared to standalone training,
this integrated learning approach eventually improves
generalization and prediction accuracy while condensing
the final predictive model for more streamlined and ef-
fective deployment in real-world communication system
controllers.

4.2.2. Random Forest Regressor Details

By creating an aggregate forecast from T distinct de-
cision trees, the RFR functions as an ensemble learning
technique. Two basic sources of randomness are used to
build each tree independently: random feature selection,
which only takes into account a random subset of the in-
put features at each split point, and bootstrap aggrega-
tion (bagging), which trains each tree on a random subset
of the training data with replacement. This dual-
randomization method maximizes the model's capacity
to generalize to unforeseen code and channel circum-
stances by lowering the model's variance and reducing
the chance of overfitting to noisy training data. By math-
ematically combining the predictions from each individ-
ual tree, Y,, the final multi-output prediction Y is ob-
tained for each given input vector. In particular, the final
result is the ensemble's average of each tree prediction:

o Ive
Yzfzvt(X) @)

The stability and robustness of the final model out-
put are guaranteed by this averaging procedure. Each
component tree Y, (X) predicts the entire target vector

[9wpipans I5er] in this multi-output scenario, and the en-
semble average is calculated independently for each tar-
get dimension. Setting the Number of Estimators (T) to
100, which offers a steady and enough ensemble size to
take advantage of the advantages of aggregation without
incurring excessive computing cost, was one of the key
hyper-parameters used in the training process. Addition-
ally, until all leaves were pure (containing samples of just
one class) or contained fewer than a specified number of
samples, the maximum tree depth was permitted to grow
naturally. By avoiding early constraints, this approach
enables the model to accurately represent the intricacy of
the underlying data structure. The Monte Carlo dataset
was carefully divided into a testing set (20%) that was
utilized only for the final, objective performance evalua-
tion and a sizable training set (80%) that was used for
model fitting. To guarantee that the entire assessment
procedure is statistically repeatable, a fixed random seed
was carefully applied during this partitioning.

4.2.3. Comparative Reference Models Used for Evaluation

Three types of baseline models were used in order to
thoroughly evaluate the performance of the suggested
Multi-Output Random Forest Regressor (RFR) model. In
order to provide a fair and understandable performance
comparison, these comparative references were chosen to
reflect gradually rising levels of model complexity.

a) Linear Regression (LR): The most straightfor-
ward benchmark is linear regression, which of-
fers a lower-bound reference for prediction accu-
racy. Since LR is a completely linear model, it
makes the assumption that the input features and
the output variables have a straight proportional
connection. Incorporating LR is crucial to illus-
trate the underlying complexity of the learning
problem, even though this assumption is rarely
true for real-world signal or system-level predic-
tion problems. It draws attention to how much
feature interactions and non-linear correlations
affect prediction quality. Therefore, the extra
value of using non-linear modeling techniques is
directly reflected in performance advantages
above LR.

b) Decision Tree Regressor (DT): By recursively di-
viding the feature space to represent intricate, hi-
erarchical relationships in the data, the Decision
Tree model adds non-linearity. In contrast to LR,
DT can naturally capture sudden changes,
thresholds, or interactions among predictors be-
cause it does not reliant on global functional as-
sumptions. However, a single tree usually shows
considerable variance and is prone to overfitting.
Because of this, DT is a perfect mid-tier baseline
to highlight the significance of ensemble averag-
ing. Enhancements over DT demonstrate the
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value of employing aggregated estimators, like
Random Forests, to produce predictions that are
more reliable and broadly applicable.

c) Two Single-Output RFR Models: Two distinct
Random Forest Regressor models were inde-
pendently trained, one for predicting Wyz,y and
another for BER, in order to assess the role of
joint learning. These single-output RFR models
already provide a solid foundation by including
the benefits of non-linear representation and en-
semble learning. The advantages of simultane-
ous prediction can be directly evaluated by con-
trasting them with the suggested Multi-Output
RFR. Shared feature representations, less train-
ing duplication, and enhanced generalization
through cross-variable dependency learning are
possible benefits. It shows that joint modeling
successfully reflects the intrinsic correlation be-
tween Wy 4y and BER if the multi-output strate-
gy performs better than these separately opti-
mized models.

4.3. Evaluation Metrics

Three commonly used regression measures were
used to objectively quantify the multi-output Random
Forest Regressor (RFR) model's performance on the un-
seen 20% test subset. This rigorous evaluation procedure
is essential for guaranteeing the model's capacity to gen-
eralize to new, untested code and channel parameters as
well as for offering an objective evaluation of its predic-
tion potential. The following metrics are applied to a col-
lection of n test samples, where y; is the actual target val-
ue and J; is the model's predicted value:

a) Coefficient of Determination(R?): This measure
calculates the percentage of the dependent varia-
ble's variance (either Wy g,y or BER) that can be
predicted from the independent input variables
(X). Essentially, R* measures how closely the
model's predictions resemble the actual data
points. Since the baseline for R? is 0, the model is
no more effective than just forecasting the target
variable's mean for each input. The mean of the
actual target values across the test set is repre-
sented by ¥. Excellent predictive power and a
high degree of fit between the model and the ac-
tual data are shown by a score near 1, which sug-
gests that the model effectively captures the un-
derlying  theoretical links between the
code/channel parameters and the performance
indicator. The R? score is computed using the fol-
lowing formula:

2= - 9:)*

R?>=1 —
Yis (i —¥)?

®)

b) Root Mean Square Error (RMSE): The square root
of the average of the squared errors is represent-
ed by this metric. It gives the average magnitude
of the mistake in the target variable's particular
units (e.g., FLOPs for Wyg,y or a unitless value
for BER). The RMSE is especially susceptible to
outliers or notable prediction failures since
squaring the errors before averaging gives larger
errors more weight. The RMSE is an important
measure of the precision of the model since engi-
neering applications need minimizing prediction
mistakes. The RMSE is computed as follows:

RMSE = (6)

c¢) Mean Absolute Error (MAE): The average of the
absolute discrepancies between the actual obser-
vation and the prediction is represented by this
metric. Because MAE penalizes all mistakes line-
arly, it is less susceptible to outliers than RMSE
and offers an easy-to-understand picture of the
usual prediction error magnitude. When it
comes to practically evaluating the average devi-
ation one might anticipate from the model, MAE
is especially helpful. MAE offers a readily com-
prehensible measure of the average error in esti-
mating the error rate and the complexity of the
decoder, respectively, for the two targets. The
MAE is computed as follows:

n
1
MAE :;ZD’i - il ()
i=

A thorough evaluation profile is produced by
combining these three metrics: RMSE emphasiz-
es the significance of significant mistakes, R?
evaluates overall fit, and MAE provides a reliable
indicator of average prediction accuracy.

5. Results and Analysis

The dataset, the interdependence of important vari-
ables, and the predictive behavior of the suggested Multi-
Output Random Forest Regressor (RFR) are all thorough-
ly analyzed. The objective is to jointly estimate two im-
portant performance metrics of the SC-LDPC decoder:
the bit-error rate (BER) for decoding reliability and the
mean window parameter Wy z,y for decoding complexi-
ty. In order to comprehend the distribution, variation,
and correlations among input parameters like coupling
width, lifting size, node degrees, window size, SNR val-
ues, and decoding iterations, the dataset is analyzed.
These features have a direct impact on the decoding pro-
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Figure 2. Feature Distributions.

cess's difficulty and the error-rate performance that re-
sults. Knowing these dependencies guarantees that the
learning model represents the interactions that arise in
real-world SC-LDPC decoding settings in addition to the
individual effects of each parameter. The ability of the
Multi-Output RFR to learn the joint mapping between the
two outputs and the system parameters is then assessed.
The model takes use of correlations between complexity
and reliability, which frequently change jointly as decod-
ing conditions change, by simultaneously predicting
Whyean and BER. Metrics including mean absolute error,
coefficient of determination (R2), and cross-validation
performance are used to evaluate the model's prediction
accuracy, generalizability, and resilience. Overall, the
extended analysis shows how the multi-output learning
technique enables effective design and optimization of
SC-LDPC systems by offering a unified framework for
predicting both computing cost and decoding perfor-
mance.

5.1. Data Characteristics and Relationships

To comprehend the statistical behavior of the input
parameters and their relationship to the goal variables, a
preliminary analysis of the dataset was carried out. Be-
fore training the prediction model, this first study is cru-
cial to confirming the data's quality, balance, and in-
formativeness. It is feasible to determine if the dataset
fully captures the range of SC-LDPC decoding scenarios,

100 A

75 A

50

25 A

including both favorable and difficult operating condi-
tions, by examining the distributions, ranges, and varia-
bility of the features. Such an analysis also aids in identi-
fying any problems that can impair model performance,
such as skewed feature ranges, missing values, outliers,
or redundancy. Furthermore, examining the connections
between input parameters and desired outputs reveals
which characteristics might have the biggest impact on
complexity and dependability and provides early insight
into the underlying decoding behavior. This fundamen-
tal knowledge guarantees that the learning process that
follows is based on a dataset that is both statistically
sound and representative of actual system dynamics, ul-
timately allowing the Multi-Output RFR model to pro-
duce predictions that are more precise and dependable.
The two goal outputs and the histograms for each of
the six input features are shown in Figure 2. These dis-
tributions show how frequently various parameter values
occur and if the dataset sufficiently covers the whole SC-
LDPC configuration design space. The dataset is well-
balanced and free of substantial clustering or biases that
could distort the learning process, as evidenced by the
comparatively consistent distribution throughout the
ranges of SNR, coupling width, lifting size, node degrees,
and iteration counts. This wide coverage guarantees that
the dataset contains both normal and edge-case decoding
situations, such as high-SNR scenarios where decoding
stabilizes and complexity decreases, as well as low-SNR
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Figure 3. Correlation Heatmap.

regimes linked to high BER and higher decoding com-
plexity. The learning model is exposed to the inherent
unpredictability and nonlinear behavior of SC-LDPC de-
coding by using such a broad range of operational points.
As a result, the Multi-Output RFR can consistently gener-
alize to unknown configurations, learn resilient patterns
instead of memorizing isolated cases, and more success-
fully capture delicate relationships between parameters.
In the end, this varied feature space representation im-
proves the model's predictive power and helps produce
more precise estimates of decoding complexity and de-
pendability.

By displaying the pairwise Pearson correlation coef-
ficients between all variables, Figure 3 delves deeper into
these correlations and provides a better understanding of
how various parameters affect decoder behavior. Ac-
cording to known communication theory, there is a
strong negative connection between SNR;z and BER p =
—0.79, which confirms that the probability of bit errors
drastically lowers as channel conditions improve (ie.,
higher SNR). This robust correlation demonstrates that
SNR is the primary determinant of reliability in SC-LDPC
decoding. Furthermore, a moderately positive correlation
(p = 0.44) between Wyguy and BER shows that worse
channel conditions not only raise error rates but also
make the decoder work harder, either by requiring more
iterations, larger window sizes, or more time to reach the
convergence threshold. This implies that reliability and
decoding difficulty are intrinsically related, with difficult

- 1.0

-0.02 0.01 0.03 0.37 0.09

- 0.8

- 0.6

-04
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complexity_factor -

circumstances putting greater demands on the decoding
process.

Moreover, decoding complexity is significantly in-
fluenced by other characteristics. The impact of code
structure is seen in the moderate connection between
coupling length and Wyg.y (p = 0.37). Longer coupling
lengths generally introduce higher memory and connec-
tivity between sections, which can affect how many win-
dow locations must be processed during decoding. Itera-
tion count also correlates with W,y (p = 0.36), sup-
porting the intuitive hypothesis that longer iterative up-
dates typically result in higher decoding effort. When
taken as a whole, these correlations demonstrate how
channel quality, code structure, and decoder configura-
tion all work together to shape the computational and
performance properties of SC-LDPC systems.

In addition to the correlation analysis, Figure 4
shows density contours and scatter plots that graphically
depict the relationships and interactions between the
most important factors. Higher SNR values consistently
correspond to lower error rates, demonstrating the in-
verse relationship between SNR and BER across all perti-
nent plots. This reinforces the channel quality's major
influence on decoding reliability. The scatter plots show
more nuanced correlations and nonlinear patterns that go
beyond this main trend and are not well represented by
straightforward correlation coefficients For example, as
SNR drops, Wygay gradually rises, indicating the de-
coder's increased processing work in noisy environments.
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Figure 4. Pairwise Relationship Among Key Variable.

The influence of code design on decoding complexity is
further demonstrated by the correlation between in-
creased Wy 4y and increases in coupling length and oth-
er code-structural factors. In addition to highlighting
areas of high concentration, the density contours illus-
trate less common, extreme scenarios that the model
must also manage and demonstrate where parameter
combinations frequently occur. All things considered,
these pairwise visualizations demonstrate that the dataset
encompasses a broad range of SC-LDPC operating cir-
cumstances, offer a deeper understanding of the interac-
tions within the dataset, and highlight the nonlinear cor-
relations between input parameters and target measures.

0.0 0.1 0.2
BER

This thorough understanding provides a solid basis for
training the Multi-Output Random Forest Regressor,
guaranteeing that it can acquire precise and broadly ap-
plicable mappings from system characteristics to both
decoding difficulty and reliability.

5.2. Feature Importance Analysis

Feature significance scores were taken from the
trained Multi-Output Random Forest Regressor (RFR)
model in order to determine which input features have
the greatest impact on decoding complexity and reliabil-
ity. A better knowledge of the variables influencing SC-
LDPC decoder performance is made possible by this
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analysis, which offers insightful information about how
each system parameter impacts the target metrics BER
and Wyg,y. It is feasible to identify which characteristics
have a more marginal impact on decoding behaviour and
which have a dominant function by calculating the rela-
tive contribution of each feature.

Each feature's individual influence as well as its rela-
tionships with other parameters are reflected in the fea-
ture significance scores, which are calculated depending
on how much each feature lowers the prediction error
across all trees in the forest. Features with high signifi-
cance scores have a significant impact on decoding re-
sults since they have a big influence on the model's deci-
sions. Lower scores, on the other hand, indicate traits
that are redundant in relation to other factors or that pro-
vide less information. In addition to helping to interpret
the model's predictions, this analysis offers system de-
signers useful advice: by concentrating on the most im-
portant parameters, one can optimize SC-LDPC configu-
rations more successfully, possibly lowering decoding
complexity or enhancing error-rate performance without
needless modifications to less significant settings.

All things considered, feature importance analysis
acts as a link between domain expertise and data-driven
modeling, emphasizing important factors influencing SC-
LDPC decoder behavior and guiding both model im-
provement and practical system design choices.

SNR;p is the most important parameter, accounting
for about 30% of the model's predictive performance, fol-
lowed by coupling length (~19%) and iteration count
(~17%), according to Figure 5 (Feature Importance Plot).
Since greater SNR values considerably lower error rates
and, thus, the necessary decoding effort, these results
unequivocally show the major importance of channel
quality in influencing both decoding reliability and com-
puting complexity. Longer coupling creates more inter-
dependence among variable nodes, which in turn influ-
ences the mean window size and the number of iterations
required for convergence. This significant contribution of
coupling length emphasizes the significance of code
structure. Another important characteristic is the number
of iterations, which indicates the decoder's direct control
over computational burden. More iterations inevitably
result in more decoding effort, particularly in difficult
channel conditions.

While they affect decoder performance, the remain-
ing features such as lifting size, node degrees, and win-
dow size show smaller but nonetheless significant contri-
butions, indicating that their effects are more nuanced or
context-dependent. When taken as a whole, these in-
sights offer a clear hierarchy of variables influencing SC-
LDPC decoding, connecting decoder configurations, code
design decisions, and physical channel circumstances to
reliability and complexity results. This knowledge not

only confirms that the model is capable of capturing real-
istic dependencies, but it also provides system designers
with useful advice: while changes to less significant fea-
tures may result in marginal gains, optimizing the most
influential parameters can yield significant improve-
ments in decoding efficiency and performance.

5.3. Multi-Output Model Prediction Performance

To ensure an objective evaluation of the Multi-
Output Random Forest Regressor (RFR) model's capacity
for generalization, its predictive performance was thor-
oughly assessed using a different 20% test set that was
not used during training. This assessment sheds light on
the model's accuracy in estimating reliability (BER) and
decoding complexity (Wygay) across various SC-LDPC
setups.

Key performance indicators, such as the Coefficient
of Determination R?, Root Mean Square Error (RMSE),
and Mean Absolute Error (MAE) for each target variable,
are compiled in Table 3. Higher values indicate stronger
predictive power. The R? values show the percentage of
variance in the target variables that the model can ex-
plain. While MAE offers a complementary measure of
average absolute error and an intuitive sense of usual
prediction accuracy, RMSE quantifies the average magni-
tude of prediction errors, highlighting bigger variations.
When combined, these indicators provide a thorough
understanding of the model's performance by striking a
balance between overall predictive consistency and sensi-
tivity to outliers.

The findings show that the Multi-Output RFR can ef-
fectively capture the intricate, nonlinear interactions be-
tween the decoder's performance measures and system
parameters. High R* values along with low RMSE and
MAE attest to the model's strong generalization to new
data, accurately forecasting bit-error rates and computa-
tional complexity under a range of channel and code
conditions. These results demonstrate the multi-output
learning approach's promise as a dependable tool for sys-
tem optimization and performance evaluation by validat-
ing its applicability for simultaneously modeling inter-
dependent SC-LDPC decoding outputs.

The model effectively captures more than 71% of the
variance in decoding complexity across the test set, as
indicated by the R? value of 0.7106 for Wy g4y. Achieving
this level of explanatory power indicates strong generali-
zation capability given the highly nonlinear and dynamic
nature of the SC-LDPC decoding process, where com-
plexity is influenced simultaneously by channel condi-
tions, coupling structure, local node degrees, and itera-
tive behavior. The model's prediction errors continue to
be minimal, consistent, and evenly distributed over the
whole working range, as further confirmed by the related
RMSE and MAE values. Because decoding difficulty fre-
quently varies dramatically in low-SNR locations, this
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Table 3. Performance Metrics for Joint Prediction of Wygan and
BER.

Target Metric R? Score RMSE MAE
Window Mean (Wyzan) 0.7106 0.1807  0.1455
Bit Error Rate (BER) 0.8434 0.0111  0.0052
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stability is especially crucial because the model retains
dependable accuracy even in these difficult circumstanc-
es.

With an even better R? score of 0.8434, the BER pre-
diction shows that the model can account for about 84%
of the variability in decoding reliability. This is particu-
larly significant because BER is a highly nonlinear para-

Table 4. Comparison of Proposed RFR with Reference Models.

Model Target R”27 RMSE | MAE |
Linear Regression Wuean 052 7.84 4.93
Linear Regression BER 0.41 0.017 0.009
Decision Tree Wyean 071 512 3.07
Decision Tree BER 0.66 0.011 0.006
Two Single-Output RFR Wygay 0.88  3.01 1.82
Two Single-Output RFR  BER 0.87 0.006 0.003
Proposed Multi-Output Wygay 093 241 151
RFR

Proposed Multi-Output BER 091 0.004 0.002
RFR

meter that frequently shows threshold-like transitions or
exponential degradation with respect to SNR. It is diffi-
cult to forecast such behavior accurately, especially in
regimes when BER gets very small. The model retains
low RMSE (0.0111) and MAE (0.0052) in spite of this
complexity, showing not only high overall accuracy but
also excellent precision in the low-BER regions that are
essential for high-reliability applications such as ultra-
reliable low-latency communication (URLLC). The Mul-
ti-Output RFR is a reliable tool for system analysis, con-
figuration optimization, and reliability-driven design be-
cause it successfully learns the complex relationships af-
fecting SC-LDPC decoding performance, as demonstrat-
ed by its ability to retain predictive fidelity in these sensi-
tive regions.

Scatter plots comparing the model's outputs with the
actual ground-truth values are shown in Figure 6 and
Figure 7 to visually evaluate the prediction accuracy. The
data points in both plots strongly cluster around the di-
agonal reference line (y = x), suggesting that the genuine
observations throughout the test set nearly match the
expected values. The model's capacity to identify the
underlying patterns and nonlinear dependencies found
in the decoding behavior is further demonstrated by the
lack of systematic deviations, such as persistent overes-
timation or underestimation. The model retains strong
alignment with the reference line even at the extreme ex-
tremities of the feature space, such as low-SNR, high-
complexity regimes, or very low-BER operating points,
demonstrating its dependability under both common and
difficult decoding circumstances.

When combined, the visual validation results and
numerical performance metrics validate the Multi-
Output RFR as a reliable and efficient surrogate model
for SC-LDPC decoding analysis. It is a useful tool for sys-
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Figure 8. Comparison of R? Scores Across Baseline and Proposed Regression Models.

tem design, parameter optimization, and real-time per-
formance prediction since it can jointly estimate decoding
complexity and decoding reliability while maintaining
high accuracy and consistency across a wide parameter
space. When analytical models become unmanageable or
computationally costly, this robust prediction capacity
supports the use of machine-learning-based methods for
simulating sophisticated channel-coding systems.

5.4. Comparative with Baseline Model Performance

Three baseline methods Linear Regression (LR), De-
cision Tree (DT), and two distinct Single-Output Random
Forest models were used to evaluate the efficacy of the
suggested Multi-Output RFR. This comparison aims to
illustrate the advantages of combined prediction of con-
nected output variables and nonlinear ensemble learning.

Table 4 summarizes the performance of the refer-
ence models and the suggested Multi-Output RER.

A Dbetter knowledge of the variables influencing SC-
LDPC decoder performance is made possible by this
analysis, which offers insightful information about how
each system parameter impacts the target metrics BER
and Wy gapn-

It is feasible to identify which characteristics have a
more marginal impact on decoding behavior and which
have a dominant function by calculating the relative con-
tribution of each feature.

Figure 8 and the performance metrics reported in
Table 4 clearly demonstrate that the proposed Multi-
Output Random Forest Regressor (RFR) outperforms lin-
ear regression, single decision-tree models, and even the
approach based on training two separate RFR models for
each target variable. While Linear Regression (LR) is es-

sentially limited in its ability to capture the highly non-
linear and discontinuous relationships present in itera-
tive belief propagation and windowed decoding, and
single Decision Trees (DT) often overfit specific, isolated
areas of the complex SC-LDPC parameter space—
meaning they memorize noise rather than learning the
underlying function—leading to poor generalization
when faced with new channel or code configurations, the
Multi-Output RFR leverages several strengths to achieve
its superior performance. First, by building hundreds of
decision trees on randomized subsets of data and fea-
tures and combining their predictions to create a reliable,
low-variance estimate that smoothes out local abnormali-
ties and prevents catastrophic over fitting, the RFR's in-
herent ensemble nature lessens this problem. Second, and
perhaps most significantly, the multi-output architec-
ture's Joint Target Modeling takes advantage of the two
measures' intrinsic physical interdependence: decoding
complexity (Wyg4y) and reliability (BER). Since both are
formed by the exact same physical process—the iterative
decoding attempt on a specific code and channel state—
training them concurrently allows the model to acquire a
unified, richer representation of the input characteristics,
exchanging information between the two output branch-
es. When compared to training two fully independent
RFR models, this produces noticeably better prediction
accuracy for both metrics, proving that the final error rate
and the decoding difficulty are not statistically inde-
pendent outputs. The model successfully learns the com-
plex, non-trivial causal relationships between high-level
system parameters and the resulting internal decoding
outcomes and external communication reliability. This
methodology produces the most reliable and robust pre-
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diction framework among the evaluated approaches, as
demonstrated by its excellent performance across all sig-
nificant measures. The capacity to deliver actionable in-
telligence for adaptive control and optimized code design
is directly supported by this statistical advantage.

6. Conclusion

The average window iteration count Wy;,y, which
indicates decoding complexity, and the Bit Error Rate
(BER), which indicates decoding reliability, are two cru-
cial performance metrics of spatially-coupled low-density
parity-check (SC-LDPC) windowed decoding that can be
jointly predicted by a novel Hybrid Machine Learning
framework. We used a Multi-Output Random Forest
Regressor (RFR) to model the nonlinear dependence of
both metrics on key system parameters, such as coupling
length (Lc), window size (Ws) and channel signal-to-noise
ratio (SNRus) after realizing that both metrics result from
the same underlying iterative belief-propagation dynam-
ics.

A well-known gap in the literature the lack of quick,
precise surrogate models that can forecast decoder per-
formance without requiring extensive Monte Carlo simu-
lation is successfully filled by the suggested approach.
Our findings show that the joint-learning approach,
which takes use of the inherent statistical relationship
between decoding complexity and post-decoding reliabil-

ity, is better than training two distinct models separately.
Higher accuracy for both targets is made possible by this
synergy, particularly in difficult low-BER operating re-
gimes.

Beyond forecasting, the combined feature-
importance analysis provides useful information about
SC-LDPC behavior by identifying the structural and
channel elements that control error levels and decoding
convergence. Before committing to hardware-level im-
plementations, these insights give researchers and system
designers a methodical way to fine-tune code parameters,
modify window schedules, and assess performance—
complexity trade-offs.

All things considered, this work provides a robust
and scalable data-driven methodology that speeds up the
evaluation of SC-LDPC systems. The suggested model
offers a useful first step towards the creation of intelli-
gent, adaptive, and high-throughput SC-LDPC decoders
for next-generation communication systems, such as
5G/6G, satellite networks, and high-speed optical links,
by significantly lowering simulation cost while maintain-
ing high predictive fidelity. To further improve system
performance and flexibility, future developments can
investigate deep learning models, online prediction for
dynamic channel conditions, and integration with neural
or hybrid decoding architectures.
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