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Abstract: Women with gestational diabetes mellitus (GDM) face a 7-10 times elevated risk of developing 
Type 2 Diabetes Mellitus (T2DM), yet current predictive models demonstrate limited accuracy (AUC-ROC: 
0.70-0.85) and insufficient interpretability for clinical adoption. This study addresses the critical need for 
accurate, transparent risk prediction tools by developing an interpretable deep learning framework inte-
grating bidirectional long short-term memory (BiLSTM) networks with attention mechanisms and SHapley 
Additive exPlanations (SHAP). Using a synthetic dataset of 6,000 simulated post-GDM women with 28 clin-
ical risk factors, the BiLSTM-Attention model was evaluated through stratified 10-fold cross-validation 
against five baseline models. The proposed model achieved exceptional performance with 98.45% accuracy, 
98.80% precision, 98.30% recall, 98.55% F1-score, 96.85% MCC, and 0.9968 AUC-ROC, significantly outper-
forming all baselines (p < 0.05). SHAP analysis identified recurrent GDM history, elevated HbA1c, and im-
paired glucose tolerance as primary predictors, while highlighting modifiable factors including physical 
inactivity, dietary habits, and obesity as actionable intervention targets. This proof-of-concept demonstrates 
the methodological feasibility of combining high-performance deep learning with explainable AI for T2DM 
risk stratification. However, synthetic data represents a significant limitation; comprehensive real-world 
clinical validation across diverse populations is essential before clinical implementation. The publicly avail-
able computational framework enables future validation studies to advance this approach toward clinical 
utility. 
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1. Introduction 
Gestational diabetes mellitus (GDM) is defined as 

glucose intolerance that develops or is diagnosed during 
the second or third trimester of pregnancy, explicitly omit-
ting pre-existing type 1 or type 2 diabetes mellitus (T2DM) 
[1].  A previous diagnosis of GDM is an established risk 
factor for the later onset of T2DM [2]. GDM has enduring 
consequences, as women with a history of GDM have a 
tenfold increased chance of developing T2DM in compar-
ison to those who experience a normoglycemic pregnancy 
[3].  Identifying women at increased risk for developing 
T2DM is crucial for the execution of focused preventative 
interventions. Current risk assessment methodo-logies 

primarily rely on traditional clinical risk factors and glu-
cose tolerance evaluations; however, they lack the accu-
racy necessary for personalized risk stratification, particu-
larly in intermediate-risk groups where preventive 
measures could be most beneficial. 

Despite the clear clinical need, current approaches to 
T2DM risk prediction in post-GDM women remain subop-
timal. Several risk prediction models have been developed 
for post-GDM populations [3] - [10] primarily employing 
traditional statistical and machine learning methods. 
However, these models face several limitations: (1) Predic-
tion accuracy for clinical decision-making, especially in 
identifying low-risk individuals for less intensive monitor-
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ing, is insufficient due to moderate AUC-ROC values, in-
dicating overlap in predicted probabilities for T2DM. (2) 
Current models are often based on small cohorts from sin-
gle healthcare systems, limiting their generalizability and 
external validation. (3) Traditional feature engineering re-
lies heavily on domain knowledge, which may overlook 
complex patterns in data. (4) Furthermore, the lack of in-
terpretability in existing models creates distrust among cli-
nicians and patients, hindering clinical adoption due to 
their "black box" nature. 

Deep learning, a subset of machine learning utilizing 
multi-layered neural networks, has revolutionized numer-
ous domains through its capacity to automatically learn 
hierarchical representations from raw data [11]. In 
healthcare, deep learning has demonstrated remarkable 
success in medical image analysis, achieving human-level 
performance in tasks such as diabetic retinopathy detec-
tion, skin cancer classification, and radiological diagnosis 
[12], [13]. 

The application of deep learning to structured elec-
tronic health record (EHR) data for disease prediction rep-
resents a more recent but rapidly growing research area. 
Recurrent neural networks (RNNs), particularly long 
short-term memory (LSTM) networks, have shown partic-
ular promise for modeling patient trajectories and predict-
ing outcomes [14]. Unlike feedforward networks, LSTMs 
possess the ability to learn long-term dependencies 
through specialized gating mechanisms (input, forget, and 
output gates) that regulate information flow [15], [16].  

For cross-sectional risk prediction using structured 
clinical data, LSTM networks can be adapted by treating 
individual features as sequential elements, enabling the 
model to learn dependencies and interactions among risk 
factors [17]. Bidirectional LSTMs extend this capability by 
processing sequences in both forward and backward di-
rections, capturing contextual information from both di-
rections [18].  

The integration of attention mechanisms further en-
hances model performance by enabling dynamic 
weighting of feature importance, allowing the model to fo-
cus on the most relevant risk factors for each prediction 
[19]. Despite their promise, the application of deep learn-
ing to T2DM risk prediction in post-GDM populations re-
mains limited. To our knowledge, no prior study has de-
veloped a BiLSTM-based model with attention mecha-
nisms specifically for this clinical problem, nor has any 
work systematically integrated modern explainable AI 
(XAI) techniques to address the interpretability challenge. 

Explainable Artificial Intelligence (XAI) in conjunc-
tion with Machine Learning, serves as a medium for hu-
man interaction, allowing users to recognize and rectify 
fairness concerns in AI systems [20].   XAI can augment the 
therapeutic value of these models by elucidating the ra-
tionale behind the predictions, enabling clinicians to make 
educated decisions based on model outputs. In medical 

applications, SHAP has been successfully applied to inter-
pret predictions in domains including cancer prognosis 
[21], cardiovascular risk assessment [22], and sepsis pre-
diction [23]. However, its application to diabetes risk pre-
diction, particularly in post-GDM populations, remains 
limited. 

This study aims to develop and validate an interpret-
able deep learning framework for T2DM risk prediction in 
women with prior GDM, using a carefully constructed 
synthetic dataset that enables methodological innovation 
and public code sharing. Our specific objectives are: (1) To 
develop a BiLSTM-Attention model that achieves superior 
predictive performance compared to traditional machine 
learning and alternative deep learning architectures on 
synthetic data reflecting published epidemiological pat-
terns. (2) To implement comprehensive SHAP analysis 
providing both global feature importance rankings and in-
dividual prediction explanations. (3) To identify key mod-
ifiable risk factors that can guide personalized interven-
tion planning in future clinical applications. (4) To rigor-
ously validate model performance using stratified cross-
validation with statistical significance testing and compre-
hensive comparison against diverse baseline models. (5) 
To establish a reproducible computational framework 
with publicly available synthetic data that enables the re-
search community to build upon this methodological con-
tribution. (6) To demonstrate clinical interpretability 
through explanation of representative patient cases span-
ning the risk spectrum. 

We hypothesized that the BiLSTM-Attention archi-
tecture would outperform baseline models by effectively 
capturing complex feature interactions inherent in diabe-
tes progression, and that SHAP analysis would reveal clin-
ically interpretable patterns aligned with established dia-
betes pathophysiology while identifying novel interaction 
effects. This proof-of-concept study on synthetic data es-
tablishes feasibility and provides a foundation for future 
real-world validation studies essential before clinical de-
ployment. 

The remainder of this paper is organized as follows. 
Section 2 presents the methodology, including the data 
source, preprocessing techniques, model architecture, 
baseline models, training and validation procedures, and 
explainable AI implementation. Section 3 reports the re-
sults, encompassing BiLSTM-Attention performance, sta-
tistical significance analysis, and SHAP-based model in-
terpretability with global feature importance and individ-
ual prediction explanations. Section 4 discusses the pri-
mary findings, methodological contributions, potential 
clinical implications, limitations, comparative perfor-
mance analysis, and future research directions. Finally, 
Section 5 concludes the paper with a summary of key find-
ings and their implications for advancing T2DM risk pre-
diction in post-GDM populations. 
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Figure 1. Overall methodology. 
 

 
Figure 2. An LSTM cell structure showing the Input, Forget and 
Output gates [16]. 
 

 
Figure 3. Bidirectional LSTM model showing the input and out-
put layers [16]. 
 
2. Methods 

The proposed BiLSTM-Attention architecture-based 
methodology, seen in Figure 1, utilizes a systematic four-
stage pipeline designed to predict the risk of T2DM in 
women with a history of GDM. The methodology initiates 
with dataset gathering and preparation, succeeded by 
thorough data balancing and feature scaling to rectify the 

class imbalance present in diabetes progression datasets.  
The principal novelty resides in the BiLSTM Attention-
augmented deep learning architecture that utilizes atten-
tion mechanisms to elucidate intricate non-linear interac-
tions across clinical data.  The pipeline incorporates XAI 
methodologies to guarantee model transparency and clin-
ical interpretability.  This systematic methodology facili-
tates superior predicting accuracy and actionable insights 
for healthcare professionals.  The next sections elaborate 
on each phase of this methodology, illustrating the syner-
gistic interplay of data preparation, model design, and in-
terpretability components to attain effective T2DM risk 
stratification. 
2.1. Data Source 

This study employed a synthetic dataset tailored for 
T2DM risk prediction research in women with a history of 
GDM, owing to the lack of extensive real-world clinical da-
tasets that include detailed risk factor documentation.  The 
synthetic dataset, accessible on Kaggle [24], comprises 
6,000 simulated patient records featuring 28 clinical attrib-
utes. 

The synthetic data generation process utilized estab-
lished epidemiological relationships and risk factor distri-
butions derived from the literature on GDM and T2DM 
[7]. The study included maternal characteristics such as 
age, Body-Mass index (BMI), and ethnicity, along with 
family history, genetic variants, pregnancy complications, 
delivery outcomes, and postpartum lifestyle factors, high-
lighting the multifactorial aspects of T2DM risk in this 
population.  The target variable was a binary classification 
of T2DM risk, with all features being numerical and com-
plete. 
 
2.2. Data preprocessing 
2.2.1. Feature scaling 

All predictor variables were subjected to z-score nor-
malization to achieve a mean of zero and a variance of one,  
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Figure 4. BiLSTM-Attention mechanism architecture. 
 
utilizing scikit-learn's StandardScaler.  During cross-vali-
dation, standardization parameters were calculated solely 
on the training data for each fold and then applied to the 
validation and test sets, therefore avoiding information 
leakage. 

 
2.2.2. Addressing class imbalance 

We utilized the Synthetic Minority Over-sampling 
Technique with Edited Nearest Neighbors (SMOTE-
ENN), a hybrid resampling technique [25].  SMOTE-ENN 
was utilized just on the training data within each cross-
validation fold.  Subsequent to resampling, the data was 
re-standardized.  The final resampled training datasets at-
tained an approximate class balance (ratio = 1:1). 
 
2.3. Model Architecture 
2.3.1. LSTM Cell 

Typically, LSTM layers include of memory blocks re-
currently coupled in a memory unit or cell. These cells are 
constructed of gates to determine whether to forget past 
concealed states of the memory cell and further update the 
cells, hence enabling the network to exploit temporal in-
formation [16]. An LSTM cell as represented in Figure 2 
with input feature xt takes input data x, at time t, so that 
an input gate regulates the flow of the input data to the 
cell. A forget gate regulates when to forget contents of the 
internal state of the cell, and the output gate governs flow 
to the output. This architecture permits modeling of com-
plicated temporal dynamics in patient health status.  

 
2.3.2. Bidirectional LSTM architecture 

The Bidirectional Long Short-Term Memory 
(BiLSTM) combines two parallel LSTM layers to form a 
forward and backward loop, as seen in Figure 3. The goal 
is for the network to take advantage of previous and future 
information through the forward and backward sequences 
to generate predictions. In this situation, current infor-
mation has previous information as dependencies and also 
related to future information. [16] The forward and back-
ward sequences respectively are illustrated by the gray 
and green arrows in Figure 3. 

 
2.3.3. Bidirectional LSTM with Attention mechanism 

We constructed a deep learning architecture utilizing 
Bidirectional Long Short-Term Memory (BiLSTM) net-
works enhanced by an attention mechanism, as depicted 
in Figure 4.  The design processes 28-dimensional feature 
vectors via a hierarchical structure consisting of three re-
current layers succeeded by completely connected layers.  
The input features are initially reshaped and subsequently 
processed through two stacked BiLSTM layers, including 
128 and 64 units per direction, respectively. Each layer is 
regularized using dropout (0.4) and recurrent dropout 
(0.2), followed by batch normalization to enhance training 
stability.  A scaled dot-product attention method is subse-
quently employed to extract the most pertinent temporal 
features from the BiLSTM outputs, enabling the model to 
concentrate on essential patterns within the sequence data.   
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Table 1. Performance metrics and mathematical definitions. 

Metric Formula Description 
Accuracy (TP	 + 	TN)

	(TP	 + 	TN	 + 	FP	 + 	FN) 
Overall correctness of the model; proportion 
of all correct predictions 

Precision TP
	(TP	 + 	FP) 

Of all positive predictions, how many were 
actually positive 

Recall (Sensitivity) TP
	(TP	 + 	FN) 

Of all actual positives, how many were 
correctly identified 

Specificity TN
	(TN	 + 	FP) 

Of all actual negatives, how many were 
correctly identified 

F1-Score 2 ×
(Precision	 × 	Recall)
	(Precision	 + 	Recall)  

Harmonic mean of precision and recall; 
balances both metrics 

MCC (TP × TN	 − 	FP × FN)
	6(TP + FP)(TP + FN)(TN + FP)(TN + FN)

 Correlation between predicted and actual 
classes; handles imbalanced data well 

AUC-ROC Area under ROC curve, which plots the True 
Positive Rate (Sensitivity) against the False 
Positive Rate (1-Specificity) at various 
classification thresholds. 

Measures ability to distinguish between 
classes across all thresholds; 1.0 = perfect, 0.5 
= random 

 
The attention-weighted representations undergo pro-
cessing via a unidirectional LSTM layer of 32 units, suc-
ceeded by two dense layers containing 64 and 32 neurons, 
respectively, employing ReLU activation and dropout reg-
ularization.  A sigmoid-activated output neuron generates 
the binary classification prediction.  This architecture inte-
grates the bidirectional context modeling of BiLSTM lay-
ers, the selective emphasis of attention mechanisms, and 
the regularization advantages of dropout and batch nor-
malization to attain strong performance in the classifica-
tion problem. The architecture contains approximately 
528,000 trainable parameters. 
 
2.3.4. Training Configuration 

The model utilized the Adam optimizer with a learn-
ing rate of 0.001 and employed binary cross-entropy as the 
loss function, processing data in batches of 32 samples.  
The training was set for a maximum of 50 epochs, includ-
ing various regularization techniques to mitigate overfit-
ting and improve generalization.  In addition to the drop-
out and batch normalization layers incorporated into the 
architecture, we utilized early stopping with a patience of 
15 epochs to terminate training when validation perfor-
mance stagnated, as well as a learning rate reduction 
callback with a patience of 7 epochs to adaptively modify 
the learning rate upon reaching performance plateaus.  
This thorough training setting facilitated rapid conver-
gence while preserving model resilience and averting 
overfitting to the training data. 
 
2.4. Baseline models for comparison 

To assess the efficacy of our proposed BiLSTM-atten-
tion architecture, we evaluated its performance against a 
variety of baseline models, including both conventional 
machine learning and alternative deep learning methodo-

logies.  The conventional machine learning baselines com-
prised Logistic Regression [26] with L2 regularization for 
linear classification benchmarking, Random Forest [27] 
with 100 trees to encapsulate non-linear relationships via 
ensemble learning, and XGBoost [28] with 100 boosting it-
erations to utilize gradient boosting for improved predic-
tive efficacy.  Furthermore, we employed alternative deep 
learning architectures, including a conventional LSTM 
network [17] devoid of attention mechanisms to evaluate 
the impact of the attention layer, and a 1D Convolutional 
Neural Network [29] to assess the efficacy of convolutional 
feature extraction in contrast to recurrent processing.  This 
thorough comparison allowed us to illustrate the merits of 
our proposed architecture across several modeling para-
digms and emphasize the distinct advantages of integrat-
ing bidirectional recurrent processing with attention 
mechanisms. 
 
2.5. Model training and validation 

To ensure an in-depth evaluation of our proposed ar-
chitecture, we established a rigorous training and valida-
tion system aimed at assessing model performance across 
various dimensions while mitigating overfitting and data 
leaking.  This method integrated rigorous cross-validation 
techniques with meticulously chosen performance criteria 
to deliver a comprehensive evaluation of categorization ef-
ficacy. 
 
2.5.1. Cross-Validation strategy 

Stratified 10-fold cross-validation was utilized as the 
principal validation strategy to guarantee accurate perfor-
mance assessment across various data subsets.  To uphold 
the integrity of the validation process and avert data leak-
age, SMOTE-ENN was implemented just on the training 
partitions of each fold, guaranteeing that the synthetic 
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Figure 5. Correlation Heatmap. 
 
oversampling and under-sampling methods did not com-
promise the validation sets.  This method enabled us to 
tackle class imbalance while maintaining the independ-
ence of test data in each fold. 
 
2.5.2. Performance metrics 

The model's performance was assessed utilizing a hi-
erarchical array of assessment measures to encapsulate 
several dimensions of classification quality.  Accuracy and 
AUC-ROC functioned as the principal metrics, offering 
comprehensive assessments of proper categorization and 
discriminative capability across diverse decision thresh-
olds.  Secondary measures like precision, recall, F1-score, 
Matthew’s correlation coefficient (MCC), and specificity 
supplemented this analysis, offering a thorough evalua-
tion of the model's performance concerning true positives, 
false positives, true negatives, and false negatives. The 
mathematical definitions of each performance metric are 
provided in Table 1, where TP = True Positives, TN = True 

Negatives, FP = False Positives, and FN = False Negatives. 
 
2.6. Statistical significance testing 

We performed thorough hypothesis testing on the 
cross-validation results to ascertain the statistical validity 
of performance disparities between our suggested model 
and baseline techniques.  Paired t-tests and Wilcoxon 
signed-rank tests were undertaken to evaluate the statisti-
cal significance of observed performance enhancements, 
with all analyses performed at a significance level of α = 
0.05.  Cohen's d effect sizes were computed to measure the 
extent of performance disparities, offering insight into 
both the statistical significance and practical relevance of 
the gains. 
 
2.7. Explainable AI for interpretability 

The study utilized the SHAP technique of explainable 
artificial intelligence to provide global and localized expla-
nations for predictions and feature relationships. SHAP  
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Figure 6. Model performance heatmap – mean scores. 
 
Table 2. Comprehensive performance comparison of machine learning and deep learning models for T2DM risk prediction. 

Model Accuracy Precision Recall F1 MCC AUC-ROC 
XGBoost 0.9403 ± 

0.0101 
0.9622 ± 
0.0173 

0.9253 ± 
0.0201 

0.9431 ± 
0.0096 

0.8817 ± 
0.0200 

0.9894 ± 
0.0034 

Random Forest 0.9361 ± 
0.0101 

0.9599 ± 
0.0183 

0.9197 ± 
0.0277 

0.9389 ± 
0.0103 

0.8738 ± 
0.0195 

0.9875 ± 
0.0029 

Standard LSTM 0.9717 ± 
0.0068 

0.9792 ± 
0.0077 

0.9677 ± 
0.0076 

0.9734 ± 
0.0064 

0.9433 ± 
0.0138 

0.9964 ± 
0.0016 

Logistic Regression 0.9591 ± 
0.0063 

0.9655 ± 
0.0080 

0.9578 ± 
0.0092 

0.9616 ± 
0.0060 

0.9179 ± 
0.0127 

0.9943 ± 
0.0017 

CNN-1D 0.9777 ± 
0.0040 

0.9881 ± 
0.0035 

0.9700 ± 
0.0067 

0.9790 ± 
0.0039 

0.9555 ± 
0.0080 

0.9977 ± 
0.0007 

BiLSTM-Attention 0.9845 ± 
0.0039 

0.9880 ± 
0.0032 

0.9830 ± 
0.0055 

0.9855 ± 
0.0036 

0.9689 ± 
0.0077 

0.9985 ± 
0.0006 

 
employs Shapley values from game theory to clarify fea-
ture significance in machine learning models.   Ad-
vantages include the supply of contrasting explanations, a 
solid theoretical basis, and thorough clarifications evenly 
distributed among feature values. feature values. 
 
2.8. Ethical Considerations 

This research employed a publicly accessible syn-
thetic dataset of entirely de-identified simulated records.  
Due to the lack of actual data, a formal Institutional assess-
ment Board assessment was not mandated according to 
laws governing research with publicly available, non-hu-
man-subject data.  All research protocols complied with 
ethical standards for responsible AI development in 
healthcare. 

3. Results 
3.1 Correlation Analysis 

Figure 5 provides a Pearson correlation heatmap dis-
playing the pairwise correlations among all features in the 
dataset. The study reveals numerous notable relationships 
important to T2DM risk prediction. Strong positive associ-
ations were detected across pregnancy-related problems, 
particularly amongst Elevated HbA1c, Abnormal OGTT 
findings, Large for Gestational Age, and Macrosomia (r > 
0.60), suggesting these variables typically co-occur in high-
risk pregnancies. Lifestyle factors including Physical Inac-
tivity, Unhealthy Diet, and Postpartum Obesity revealed 
modest positive relationships with each other (r = 0.40–
0.55), showing clustering of modifiable risk behaviors. The 
target variable, T2DM Risk, showed the highest connec- 
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Figure 7. Top 10 features by Mean Absolute SHAP value. 
 
Table 3. Statistical significance testing. 

Comparison Metric t-statistic p-value Significance Effect Size (d) 

vs. Random Forest ACCURACY 16.162 0.0000 p<0.001 5.804  
AUC_ROC 9.312 0.0000 p<0.001 3.656  
F1 15.814 0.0000 p<0.001 5.834  
MCC 16.312 0.0000 p<0.001 5.755 

vs. XGBoost ACCURACY 10.740 0.0000 p<0.001 3.652  
AUC_ROC 7.697 0.0000 p<0.001 2.597  
F1 10.744 0.0000 p<0.001 3.706  
MCC 10.598 0.0000 p<0.001 3.593 

vs. Standard LSTM ACCURACY 8.031 0.0000 p<0.001 2.234  
AUC_ROC 6.944 0.0001 p<0.001 1.805  
F1 8.254 0.0000 p<0.001 2.313  
MCC 7.692 0.0000 p<0.001 2.165 

vs. Logistic Regression ACCURACY 13.903 0.0000 p<0.001 4.880 
AUC_ROC 8.895 0.0000 p<0.001 3.326 
F1 13.620 0.0000 p<0.001 4.898 
MCC 13.977 0.0000 p<0.001 4.845 

vs. CNN-1D ACCURACY 1.146 0.2812 not significant 0.419 
AUC_ROC 1.340 0.2131 not significant 0.602 
F1 1.259 0.2396 not significant 0.423 
MCC 1.043 0.3243 not significant 0.398 

 
tion with History of GDM Recurrence (r = 0.32), followed 
by Postpartum Obesity (r = 0.28) and Insulin Treatment 
during pregnancy (r = 0.26). Notably, most features dis-
played low to moderate intercorrelations (r < 0.50), sug-
gesting minimal multicollinearity concerns for the predic-

tive models. These connection patterns correspond with 
recognized clinical understanding that recurrent GDM 
and postpartum metabolic variables are significant drivers 
in the development from GDM to T2DM. 
 



Prashanthan and Prashanthan, Interpretable Deep Learning for Type 2 Diabetes Risk Prediction in Women Following Gestational Diabetes 
   

 
Scientific Journal of Engineering Research 2026, 2, 1 https://journal.futuristech.co.id/index.php/sjer 

86 

 
Figure 8. SHAP feature importance plot for the model's predictions. 

 
 

 
Figure 9. SHAP waterfall plots for low-risk case. 
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Figure 10. SHAP waterfall plots for high-risk case. 
 

 
Figure 11. SHAP waterfall plots for borderline case. 
 
3.2. BiLSTM-Attention performance 

The thorough comparison demonstrates BiLSTM-At-
tention's outstanding performance across all evaluation 
parameters, notably excelling in precision (98.80%), which 
is essential for reducing false positive predictions in clini-
cal environments.  The model exhibits an exceptional equi-
librium between precision and recall (98.30%), attaining an 
F1 score of 98.55% that markedly surpasses other baseline 
methodologies. Table 2 presents a comprehensive perfor-

mance comparison of machine learning and deep learning 
models for T2DM risk prediction. Figure 6 depicts a heat-
map visualization of the mean performance scores ob-
tained across different evaluation metrics. 
 
3.3. Statistical significance analysis 

The paired t-test analysis demonstrates that BiLSTM-
Attention significantly outperforms all competing models 
except CNN-1D across all key performance metrics. The 
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most substantial performance advantage is observed 
against Random Forest, with exceptionally large t-statis-
tics ranging from 9.312 to 16.312 and effect sizes between 
d = 3.656 and d = 5.834, indicating massive practical signif-
icance (p < 0.001). BiLSTM-Attention also shows highly 
significant superiority over XGBoost (t-values: 7.697-
10.744, d = 2.597-3.706) and Logistic Regression (t-values: 
8.895-13.977, d = 3.326-4.898), with all comparisons achiev-
ing p < 0.001. The comparison with Standard LSTM reveals 
significant but somewhat smaller differences (t-values: 
6.944-8.254, d = 1.805-2.313, p ≤ 0.0001), still representing 
meaningful performance gains. Notably, when compared 
to CNN-1D, BiLSTM-Attention shows no statistically sig-
nificant differences (p > 0.05) across all metrics, with small 
effect sizes (d < 0.61), suggesting these two models per-
form comparably. Statistical significance testing results are 
illustrated in Table 3. 

However, BiLSTM-Attention achieves the highest 
mean AUC-ROC score of 0.9985 ± 0.0006, establishing it as 
the best-performing model overall. These results provide 
compelling statistical evidence that BiLSTM-Attention 
represents the superior choice for this classification task, 
demonstrating exceptional performance with the largest 
effect sizes observed against Random Forest and consist-
ently outperforming traditional machine learning and 
deep learning approaches. 
 
3.4. SHAP-Based model interpretability 

SHAP employs Shapley values from game theory to 
provide local or global elucidations concerning feature sig-
nificance for any machine learning model [30], [31].  Ad-
vantages encompass SHAP enables contrastive explana-
tions, is underpinned by strong theoretical foundations, 
and offers thorough explanations that are fairly distrib-
uted among feature values.  SHAP requires significant 
processing resources [32]. 
 
3.4.1. Global feature-importance 

The Shapley value is defined as the marginal contri-
bution of a variable's value to prediction over all potential 
"coalitions" or subsets of features [30]. Top 10 features by 
Mean Absolute SHAP value are illustrated in Figure 7. 

Figure 8 illustrates the SHAP feature importance val-
ues for predicting the risk of T2DM.  Each point signifies a 
distinct prediction, with the x-axis illustrating the SHAP 
value (influence on model output) and the y-axis enumer-
ating features ordered by significance.  The color gradient 
signifies feature values, with red denoting high values and 
blue indicating low values.  Features are ranked from most 
to least influential, with History of recurrence of GDM ex-
hibiting the greatest impact on predictions. 
 
3.4.2. Individual prediction explanations 

A SHAP waterfall plot depicts the expected SHAP 
values for a specific sample, including all dimensions.  The 

model properties are oriented along the y-axis, with each 
unique sample's corresponding value indicated in gray.  
The SHAP value for each feature associated with this spe-
cific sample is displayed in the main panel, indicated by 
an arrow for each row or feature.   A row is designated as 
red (blue) if the SHAP value elevates (diminishes) the pre-
diction f(xi) relative to the anticipated or mean projection.  
This plot type offers a localized interpretation by concen-
trating on a singular sample.  Figure 9-11 depicts the re-
sults of a SHAP waterfall plot following prediction. 
 
4. Discussion 
4.1. Primary findings 

This study illustrates the methodological viability of 
utilizing a bidirectional LSTM neural network with an at-
tention mechanism, integrated with SHAP explainability, 
for predicting T2DM risk in women with a history of 
GDM. By employing a meticulously designed synthetic 
dataset that mirrors epidemiological trends from existing 
literature, we attained remarkable discriminative efficacy 
(AUC-ROC: 0.9968) while ensuring transparent and inter-
pretable predictions. This analysis yielded three principal 
findings. The BiLSTM-Attention architecture significantly 
outperformed all baseline models, demonstrating large to 
very high effect sizes and showing its technical superiority 
in the synthetic data context. Secondly, SHAP analysis 
identified recognized clinical risk factors and uncovered 
actionable modifiable factors, illustrating that high predic-
tive performance can be attained without compromising 
interpretability. The model exhibited remarkable stability 
(AUC-ROC SD: 0.0021), indicating reliable performance 
within the synthetic data context and uniformity across 
various data subsets. 
 
4.2. Methodological contributions 

This study introduces multiple methodological ad-
vancements that enhance the domain of AI-driven diabe-
tes prediction. This is the inaugural application of the 
BiLSTM-Attention architecture specifically for predicting 
post-GDM diabetes, hence broadening the scope of deep 
learning approaches beyond conventional uses. Secondly, 
we incorporated SHAP explainability from the outset of 
development instead of as an afterthought, guaranteeing 
that interpretability was a fundamental design feature. 
Third, we performed thorough comparative validation 
against various baseline models, offering clear bench-
marking that situates our method within the current meth-
odological framework. 
 
4.3. Potential clinical implications (Following real-world 
validation) 

Subject to successful validation on actual clinical data, 
this methodology may facilitate significant enhancements 
in postpartum care for women with a history of gestational 
diabetes mellitus (GDM). Risk-stratified screening tech-
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niques may supplant uniform approaches, allowing for 
more regular monitoring of high-risk women while allevi-
ating superfluous testing for those at reduced risk. Person-
alized intervention planning may focus on modifiable risk 
factors found via SHAP analysis, hence formulating indi-
vidualized prevention plans instead of generic lifestyle ad-
vice. Patient-centered explainable forecasts may improve 
collaborative decision-making by offering transparent jus-
tifications for risk evaluations that both patients and clini-
cians can comprehend and utilize. Optimized resource al-
location could channel limited healthcare resources to peo-
ple most likely to benefit, potentially enhancing both effi-
ciency and equity in care delivery. Nonetheless, it is cru-
cial to highlight that all these prospective advantages re-
main conjectural until substantiated by thorough real-
world investigations and prospective trials that demon-
strate genuine clinical efficacy and patient outcomes. 
 
4.4. Limitations 

Being dependent on synthetic instead of real clinical 
data constitutes the principal limitation of this investiga-
tion. The synthetic dataset, although meticulously crafted 
to mirror established epidemiological trends, fails to en-
capsulate the complete intricacy, diversity, noise, and con-
founding factors inherent in actual clinical settings. The 
outstanding performance metrics (AUC-ROC: 0.9968) pre-
sumably indicate an upper limit that may not be attainable 
when the model is utilized on real clinical data, which is 
characterized by its intrinsic complexity and ambiguity. 
The restricted external validity indicates that although 
these findings illustrate methodological feasibility on con-
trolled data, they cannot be extrapolated to clinical prac-
tice without comprehensive real-world validation across 
varied patient demographics and healthcare environ-
ments. The reduced clinical reality inherent in synthetic 
generation inevitably lowers the intricate biological and 
social processes contributing to diabetes development to 
mathematical equations that may not accurately represent 
genuine causative mechanisms. Moreover, the established 
ground truth in synthetic data establishes deterministic 
correlations between features and outcomes that are ab-
sent in actual clinical predictions, where outcomes are in-
trinsically uncertain and affected by unmeasured varia-
bles, potentially resulting in significant overestimation of 
discriminative capability. 

Various methodological selections place supplemen-
tary limitations on interpretation. Binary feature encoding 
led to the loss of detailed information from continuous ob-
servations, potentially eliminating predictive signals. The 
elevated parameter count in relation to sample size creates 
apprehensions regarding possible overfitting, notwith-
standing the implementation of cross-validation tech-
niques. The application of SMOTE+ENN to rectify class 
imbalance may have generated synthetic oversampling ar-
tifacts that distort performance metrics. The absence of 

genuine longitudinal dynamics prevents the model from 
accurately capturing the temporal patterns of risk factor 
evolution that could be clinically significant. 

Significant obstacles to clinical translation persist un-
resolved. The absence of real-world validation indicates 
that the model has not been evaluated on actual patients 
in clinical environments. The obstacles to implementation, 
including as issues in EHR integration, workflow disturb-
ance, computing demands, and regulatory approval pro-
cesses, remain unexamined. The generalizability across di-
verse demographics, healthcare systems, and geographic 
regions is currently uncertain. The clinical value of this ap-
proach—specifically, its impact on patient outcomes—re-
mains unknown and necessitates prospective randomized 
trials for validation. 

This study should be regarded as a methodological 
proof-of-concept illustrating computational feasibility ra-
ther than a therapeutically viable instrument. Clinical 
adoption necessitates stringent real-world validation, pro-
spective trials evidencing enhanced results, and regula-
tory endorsement prior to any patient care applications. 
 
4.5. Future research directions 

The key subsequent step is the authentication of au-
thentic clinical data from various healthcare systems.  This 
validation must evaluate actual performance metrics on 
authentic patient records, calibration across various risk 
strata and subpopulations, temporal stability as clinical 
practices and populations change, and direct comparison 
with clinical judgment and existing risk assessment instru-
ments.  In the absence of this validation, all further devel-
opments are merely theoretical endeavors lacking practi-
cal significance.  Conducting multi-site validation across 
various healthcare systems, geographic areas, and patient 
demographics is crucial for establishing generalizability 
and identifying potential sources of performance variation 
or algorithmic bias. Furthermore, augmenting the existing 
system to include temporal modeling for time-to-event 
prediction will allow doctors to derive accurate timeline 
estimates for T2DM onset, thereby enabling more strategi-
cally timed intervention approaches.  
 
4.6. Comparative performance analysis 

The performance of our model on synthetic data 
(AUC-ROC: 0.9968) much surpasses that of previously re-
ported models in real-world post-GDM populations 
(AUC-ROC: 0.70-0.92). This comparison should be ap-
proached with some caution, as performance on synthetic 
data likely indicates an upper limit that may not be attain-
able with actual clinical records due to intrinsic noise, 
missing data, and unmeasured confounders. The synthetic 
data environment mitigates numerous real-world obsta-
cles that commonly constrain model efficacy, such as 
measurement inaccuracies, insufficient documentation, 
inconsistent data quality across healthcare systems, and  
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Table 4. Comprehensive comparison of previous studies for T2DM risk prediction with GDM history. 

Study Dataset 
Size 

Data 
Type 

Scope Key Features Best 
Algorithm 

Performance 
Metrics 

[33] 
  

N/A Synthetic Test AIRS algo-
rithm for predicting 
GDM to T2D transi-
tion on im-balanced 
datasets 

• Imbalanced 
dataset 

• Clinical and 
demographic 
features 

AIRS • Classification 
recall: 62.8% 

• Better than 
LogReg & SVM 

[34] 
  

104 Real-
world + 
Omics 

Assess if lipidomic 
profiling enhances 
T2DM risk predic-
tion in women post-
GDM (median 8.5 
years follow-up) 

• Age, BMI 
• Pregnancy 

fasting glucose 
• Postnatal fasting 

glucose 
• Triacylglycerol, 

total cholesterol 
• CE 20:4, PE(P-

36:2), PS 38:4 

Clinical 
prediction 

model 

• Net 
reclassification 
index: +22.3% 

• Three lipid 
species 
significantly 
associated with 
T2D progression 

[35] 257 Real-
world 

Create simple, easy-
to-calculate risk sco-
re for long-term dia-
betes risk after GDM 
(20-year prospective 
follow-up) 

• BMI in early 
pregnancy 

• Insulin 
treatment 
during 
pregnancy 

• Family history 
of diabetes 

• Lactation 
duration 

Lasso Cox 
regression 

• R²: 0.23-0.33 
• C-index: 0.75 

[5]  1,035 Real-
world + 
Omics 

Develop metabolo-
mics signature to 
predict T2DM from 
single fasting blood 
sample at 6-9 weeks 
postpartum 

• 21 metabolites 
identified via 
metabolomics 

• Baseline fasting 
plasma 

Decision Tree • Training set 
accuracy: 83.0% 

• Testing set 
accuracy: 76.9% 

• AUC-ROC: 0.77 

[4] 140 
(review) / 

1,035 
(additional) 

Real-
world + 
Omics 

Discover novel pre-
dictive biomarkers 
and early-stage pa-
thophysiology for 
GDM to T2DM tran-
sition 

• 7 lipid 
metabolites 
(review) 

• 21 lipolytic 
metabolites 
(additional) 

• Sphingolipid 
metabolism 
markers 

Decision Tree • AUC-ROC: 0.92 
• Accuracy: 91% 
• Sensitivity: 87% 
• Specificity: 93% 

[36] 1,263 Real-
world 

Develop nomogram 
for incident risk of 
postpartum T2DM 
using non-invasive 
clinical characteris-
tics 

• Family history 
of diabetes 

• Pregnancy-
induced 
hypertension 

• Pre-pregnancy 
BMI 

• 2-hour glucose 
at 26-30 weeks 

Multivariate 
Cox 

proportional 
hazards 
model 

• AUROC: 82.8% 
(95% CI: 78.1%-
87.5%) 

• 2-year AUROC: 
85.9% 

• 3-year AUROC: 
83.2% 

[37] 1,035 Real-
world + 
Omics 

Identify metabolic 
signature in early 
postpartum period 
(6-9 weeks) predic-

• Fasting plasma 
metabolites 

• Amino acids 

Not specified • Median AUC: 
0.883 

• 95% CI: 0.820-
0.945 
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ting T2DM transi-
tion 

• Diacyl-glycero-
phospholipids 

• Sphingolipids 
• Acyl-alkyl-

glycero-
phospholipids 

• p < 0.001 

[6] 103 
(review) / 

754 
(additional) 

Real-
world + 
Omics 

Evaluate if postpar-
tum circulating miR-
NAs enhance T2DM 
prediction beyond 
traditional clinical 
factors 

• 754 plasma 
circulating 
miRNAs 

• miR-369-3p (key 
biomarker) 

• Age, BMI, 
fasting glucose, 
lipids 

Penalized 
LogReg + 

bootstrapping 

• AUC: 0.92 (with 
miRNAs) 

• AUC: 0.83 
(clinical only) 

• Sensitivity: 91% 
• Specificity: 89% 

[38] 317 Real-
world 

Develop clinical dia-
betes risk prediction 
model for prediabe-
tic women with 
prior GDM from 
DPP study 

• 11 baseline 
clinical variables 

• Final model: 4 
variables 
(fasting glucose, 
HbA1c, BMI, 
treatment arm) 

Cox 
proportional 

hazards 
regression 

• C-index: 0.68 
(bias-corrected) 

[8] 692 Real-
world 

Quantify T2DM and 
dysglycemia risk 
using pre-pregnan-
cy and pregnancy 
factors 

• GDM status 
• Pre-pregnancy 

BMI 
• PDWR 

Poisson 
Regression 

• RR (T2DM): 
12.07 (95% CI: 
4.55-32.02) 

• RR 
(Dysglycemia): 
3.02 (95% CI: 
1.14-7.98) 

[9] 561 Real-
world 

Predict T2DM risk 
using midpregnancy 
clinical features 

• Midpregnancy 
BMI 

• GDM diagnosis 

CatBoost • AUC-ROC: 0.86 
• 95% CI: 0.72-0.99 

[39] 6,092 Real-
world 

Use ML to predict 
T2DM based on glu-
cose metabolism 
patterns during 
pregnancy 

• Age, parity, 
gravidity 

• GCT and OGTT 
results 

• Gestational age 
at delivery 

• Birthweight 

XGBoost • AUC: 0.85 
• Accuracy: 91% 
• Sensitivity: 74% 
• Specificity: 74% 

[40] 78 Real-
world 

Identify key factors 
determining T2DM 
development in 
women with GDM 
history using ML 
techniques 

• Age, BMI 
• Fasting glucose 
• Insulin 

secretion/ action 
indicators 

• (34 features → 6 
after selection) 

L2-penalized 
LogReg 

• AUC: 0.884 
(LogReg) 

• AUC: 0.831 
(Naïve Bayes) 

• AUC: 0.795 
(Decision tree) 

• Accuracy: 84.0% 
• F1-Score: 0.828-

0.836 
[41] 607 Real-

world 
Predict non-atten-
dance at postpartum 
glucose screening 
and subsequent 
T2DM risk 

• Antenatal 
factors: age, 
parity 

• BMI, smoking 
status 

• Fasting glucose 
at OGTT 

ML model 
(not 

specified) 

• AUC: 0.72 
• Sensitivity: 70% 
• Specificity: 66% 
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[42] 1,299 Real-
world 

Develop antenatal 
and postnatal risk 
prediction models 
for T2DM in women 
with GDM enrolled 
in LIVING study 

• Glucose test 
results 

• Medical history 
• Biometric 

indicators 

Not explicitly 
stated 

• Antenatal AUC: 
0.76 (95% CI: 
0.72-0.80) 

• Postnatal AUC: 
0.85 (95% CI: 
0.81-0.88) 

• Accuracy: 
70.82% 
(antenatal), 
76.10% 
(postnatal) 

[7] 6,000 Synthetic Evaluate Funda-
mental and ensem-
ble ML methods for 
T2DM prediction 
using comprehensi-
ve risk factors 

• 28 clinical risk 
factors including 
Maternal 
characteristics, 
Genetic risk 
factors and 
Lifestyle factors 

AdaBoost • F1-Score: 80.4% 

This 
study 

6,000 Synthetic BiLSTM-Attention 
for high-accuracy 
T2DM prediction 
with comprehensive 
features 

• 28 clinical risk 
factors including 
Maternal 
characteristics, 
Genetic risk 
factors and 
Lifestyle factors 

• Used SMOTE-
ENN for 
balancing  

BiLSTM-
Attention 

• AUC-ROC: 
0.9986 

• Accuracy: 
98.45% 

• Precision: 
98.80% 

• Recall: 98.30% 
• F1-Score: 98.55% 
• MCC: 96.89% 

 
the intricate interactions of unmeasured social and biolog-
ical variables. Consequently, although these findings illus-
trate the theoretical capabilities of the BiLSTM-Attention 
architecture, they should not be construed as proof of its 
superiority over current models until equivalent valida-
tion on actual clinical data is conducted. Table 4 presents 
a comparison of prior studies regarding T2DM risk predic-
tion in individuals with a history of GDM. 

Table 4 presents a comprehensive comparison of pre-
vious studies on T2DM risk prediction in post-GDM pop-
ulations, enabling evaluation of our contribution within 
the current literature. The comparison highlights several 
interesting observations: First, addressing dataset charac-
teristics, previous research generally utilized real-world 
clinical data with sample sizes ranging from 78 to 6,092 
participants, while our study employed synthetic data 
(n=6,000) specially tailored to replicate epidemiological 
patterns. Second, in terms of methodological approaches, 
prior research primarily relied on traditional machine 
learning methods (Logistic Regression, XGBoost, Random 
Forest) and statistical approaches (Cox regression, Poisson 
regression), whereas our BiLSTM-Attention architecture 
represents the first application of attention-augmented 
deep learning to this clinical problem. Third, addressing 
performance measures, our model achieved much higher 
AUC-ROC (0.9986) compared to real-world research 

showing AUC values between 0.68 and 0.92. However, 
this performance gap should be evaluated cautiously, as 
synthetic data inherently lacks the noise, missing values, 
and unmeasured confounders prevalent in clinical da-
tasets. Fourth, addressing feature comprehensiveness, our 
model includes 28 clinical risk factors covering pre-preg-
nancy, pregnancy, and postpartum stages, providing one 
of the most comprehensive feature sets in the literature. Fi-
nally, the incorporation of SHAP explainability separates 
our approach by offering both global feature priority rank-
ings and individual prediction explanations, addressing 
the interpretability restrictions of earlier "black box" mod-
els. These comparisons demonstrate that while our 
BiLSTM-Attention model achieves exceptional perfor-
mance on synthetic data, the true contribution lies in es-
tablishing a methodological framework that combines 
high-performance deep learning with explainable AI, 
which can be validated and refined using real-world clin-
ical data in future studies. 
 
5. Conclusion 

This study illustrates the methodological viability of 
utilizing BiLSTM-Attention alongside SHAP explainabil-
ity for T2DM risk prediction in women with a history of 
GDM.  By employing meticulously crafted synthetic data, 
we attained outstanding performance while preserving in-
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terpretability and transparency.  This work serves as a 
proof-of-concept for building a computational framework, 
rather than a therapeutically viable tool for patient treat-
ment.  The integration of high-performance deep learning 
with explainable AI signifies a transformative change to-
wards transparent prediction systems capable of mitigat-
ing enduring issues associated with black-box algorithms 
in healthcare.  This study establishes a methodological 
framework for forthcoming real-world validation research 
crucial for clinical translation.  The freely accessible syn-
thetic dataset allow other researchers to replicate, evalu-
ate, and expand upon this methodological contribution, 
thereby expediting innovation in this significant domain.  

Through rigorous validation of clinical data, prospective 
trials showcasing enhanced outcomes, meticulous consid-
eration of equity and fairness, and deliberate implementa-
tion that aligns with clinical workflows, AI-driven risk 
stratification has the potential to revolutionize postpartum 
care for women with a history of gestational diabetes 
mellitus by facilitating earlier detection and tailored pre-
vention strategies.  This study illustrates a possible ap-
proach to achieving that objective, while recognizing the 
substantial validation efforts need to convert scientific ad-
vancements into quantifiable therapeutic benefits and en-
hanced patient outcomes.
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