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Abstract: Women with gestational diabetes mellitus (GDM) face a 7-10 times elevated risk of developing
Type 2 Diabetes Mellitus (T2DM), yet current predictive models demonstrate limited accuracy (AUC-ROC:
0.70-0.85) and insufficient interpretability for clinical adoption. This study addresses the critical need for
accurate, transparent risk prediction tools by developing an interpretable deep learning framework inte-
grating bidirectional long short-term memory (BiLSTM) networks with attention mechanisms and SHapley
Additive exPlanations (SHAP). Using a synthetic dataset of 6,000 simulated post-GDM women with 28 clin-
ical risk factors, the BiLSTM-Attention model was evaluated through stratified 10-fold cross-validation
against five baseline models. The proposed model achieved exceptional performance with 98.45% accuracy,
98.80% precision, 98.30% recall, 98.55% F1-score, 96.85% MCC, and 0.9968 AUC-ROC, significantly outper-
forming all baselines (p < 0.05). SHAP analysis identified recurrent GDM history, elevated HbAlc, and im-
paired glucose tolerance as primary predictors, while highlighting modifiable factors including physical
inactivity, dietary habits, and obesity as actionable intervention targets. This proof-of-concept demonstrates
the methodological feasibility of combining high-performance deep learning with explainable AI for T2DM
risk stratification. However, synthetic data represents a significant limitation; comprehensive real-world
clinical validation across diverse populations is essential before clinical implementation. The publicly avail-
able computational framework enables future validation studies to advance this approach toward clinical
utility.
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1. Introduction

Gestational diabetes mellitus (GDM) is defined as
glucose intolerance that develops or is diagnosed during
the second or third trimester of pregnancy, explicitly omit-
ting pre-existing type 1 or type 2 diabetes mellitus (T2DM)
[1]. A previous diagnosis of GDM is an established risk
factor for the later onset of T2DM [2]. GDM has enduring
consequences, as women with a history of GDM have a
tenfold increased chance of developing T2DM in compar-
ison to those who experience a normoglycemic pregnancy
[3]. Identifying women at increased risk for developing
T2DM is crucial for the execution of focused preventative
interventions. Current risk assessment methodo-logies

primarily rely on traditional clinical risk factors and glu-
cose tolerance evaluations; however, they lack the accu-
racy necessary for personalized risk stratification, particu-
larly in intermediate-risk groups where preventive
measures could be most beneficial.

Despite the clear clinical need, current approaches to
T2DM risk prediction in post-GDM women remain subop-
timal. Several risk prediction models have been developed
for post-GDM populations [3] - [10] primarily employing
traditional statistical and machine learning methods.
However, these models face several limitations: (1) Predic-
tion accuracy for clinical decision-making, especially in
identifying low-risk individuals for less intensive monitor-
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ing, is insufficient due to moderate AUC-ROC values, in-
dicating overlap in predicted probabilities for T2DM. (2)
Current models are often based on small cohorts from sin-
gle healthcare systems, limiting their generalizability and
external validation. (3) Traditional feature engineering re-
lies heavily on domain knowledge, which may overlook
complex patterns in data. (4) Furthermore, the lack of in-
terpretability in existing models creates distrust among cli-
nicians and patients, hindering clinical adoption due to
their "black box" nature.

Deep learning, a subset of machine learning utilizing
multi-layered neural networks, has revolutionized numer-
ous domains through its capacity to automatically learn
hierarchical representations from raw data [11]. In
healthcare, deep learning has demonstrated remarkable
success in medical image analysis, achieving human-level
performance in tasks such as diabetic retinopathy detec-
tion, skin cancer classification, and radiological diagnosis
[12], [13].

The application of deep learning to structured elec-
tronic health record (EHR) data for disease prediction rep-
resents a more recent but rapidly growing research area.
Recurrent neural networks (RNNs), particularly long
short-term memory (LSTM) networks, have shown partic-
ular promise for modeling patient trajectories and predict-
ing outcomes [14]. Unlike feedforward networks, LSTMs
possess the ability to learn long-term dependencies
through specialized gating mechanisms (input, forget, and
output gates) that regulate information flow [15], [16].

For cross-sectional risk prediction using structured
clinical data, LSTM networks can be adapted by treating
individual features as sequential elements, enabling the
model to learn dependencies and interactions among risk
factors [17]. Bidirectional LSTMs extend this capability by
processing sequences in both forward and backward di-
rections, capturing contextual information from both di-
rections [18].

The integration of attention mechanisms further en-
hances model performance by enabling dynamic
weighting of feature importance, allowing the model to fo-
cus on the most relevant risk factors for each prediction
[19]. Despite their promise, the application of deep learn-
ing to T2DM risk prediction in post-GDM populations re-
mains limited. To our knowledge, no prior study has de-
veloped a BiLSTM-based model with attention mecha-
nisms specifically for this clinical problem, nor has any
work systematically integrated modern explainable Al
(XAI) techniques to address the interpretability challenge.

Explainable Artificial Intelligence (XAI) in conjunc-
tion with Machine Learning, serves as a medium for hu-
man interaction, allowing users to recognize and rectify
fairness concerns in Al systems [20]. XAI can augment the
therapeutic value of these models by elucidating the ra-
tionale behind the predictions, enabling clinicians to make
educated decisions based on model outputs. In medical

applications, SHAP has been successfully applied to inter-
pret predictions in domains including cancer prognosis
[21], cardiovascular risk assessment [22], and sepsis pre-
diction [23]. However, its application to diabetes risk pre-
diction, particularly in post-GDM populations, remains
limited.

This study aims to develop and validate an interpret-
able deep learning framework for T2DM risk prediction in
women with prior GDM, using a carefully constructed
synthetic dataset that enables methodological innovation
and public code sharing. Our specific objectives are: (1) To
develop a BILSTM-Attention model that achieves superior
predictive performance compared to traditional machine
learning and alternative deep learning architectures on
synthetic data reflecting published epidemiological pat-
terns. (2) To implement comprehensive SHAP analysis
providing both global feature importance rankings and in-
dividual prediction explanations. (3) To identify key mod-
ifiable risk factors that can guide personalized interven-
tion planning in future clinical applications. (4) To rigor-
ously validate model performance using stratified cross-
validation with statistical significance testing and compre-
hensive comparison against diverse baseline models. (5)
To establish a reproducible computational framework
with publicly available synthetic data that enables the re-
search community to build upon this methodological con-
tribution. (6) To demonstrate clinical interpretability
through explanation of representative patient cases span-
ning the risk spectrum.

We hypothesized that the BiLSTM-Attention archi-
tecture would outperform baseline models by effectively
capturing complex feature interactions inherent in diabe-
tes progression, and that SHAP analysis would reveal clin-
ically interpretable patterns aligned with established dia-
betes pathophysiology while identifying novel interaction
effects. This proof-of-concept study on synthetic data es-
tablishes feasibility and provides a foundation for future
real-world validation studies essential before clinical de-
ployment.

The remainder of this paper is organized as follows.
Section 2 presents the methodology, including the data
source, preprocessing techniques, model architecture,
baseline models, training and validation procedures, and
explainable Al implementation. Section 3 reports the re-
sults, encompassing BiLSTM-Attention performance, sta-
tistical significance analysis, and SHAP-based model in-
terpretability with global feature importance and individ-
ual prediction explanations. Section 4 discusses the pri-
mary findings, methodological contributions, potential
clinical implications, limitations, comparative perfor-
mance analysis, and future research directions. Finally,
Section 5 concludes the paper with a summary of key find-
ings and their implications for advancing T2DM risk pre-
diction in post-GDM populations.
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Figure 1. Overall methodology.
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Figure 3. Bidirectional LSTM model showing the input and out-
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2. Methods

The proposed BiLSTM-Attention architecture-based
methodology, seen in Figure 1, utilizes a systematic four-
stage pipeline designed to predict the risk of T2DM in
women with a history of GDM. The methodology initiates
with dataset gathering and preparation, succeeded by
thorough data balancing and feature scaling to rectify the
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class imbalance present in diabetes progression datasets.
The principal novelty resides in the BiLSTM Attention-
augmented deep learning architecture that utilizes atten-
tion mechanisms to elucidate intricate non-linear interac-
tions across clinical data. The pipeline incorporates XAI
methodologies to guarantee model transparency and clin-
ical interpretability. This systematic methodology facili-
tates superior predicting accuracy and actionable insights
for healthcare professionals. The next sections elaborate
on each phase of this methodology, illustrating the syner-
gistic interplay of data preparation, model design, and in-
terpretability components to attain effective T2DM risk
stratification.

2.1. Data Source

This study employed a synthetic dataset tailored for
T2DM risk prediction research in women with a history of
GDM, owing to the lack of extensive real-world clinical da-
tasets that include detailed risk factor documentation. The
synthetic dataset, accessible on Kaggle [24], comprises
6,000 simulated patient records featuring 28 clinical attrib-
utes.

The synthetic data generation process utilized estab-
lished epidemiological relationships and risk factor distri-
butions derived from the literature on GDM and T2DM
[7]. The study included maternal characteristics such as
age, Body-Mass index (BMI), and ethnicity, along with
family history, genetic variants, pregnancy complications,
delivery outcomes, and postpartum lifestyle factors, high-
lighting the multifactorial aspects of T2DM risk in this
population. The target variable was a binary classification
of T2DM risk, with all features being numerical and com-
plete.

2.2. Data preprocessing
2.2.1. Feature scaling

All predictor variables were subjected to z-score nor-
malization to achieve a mean of zero and a variance of one,
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Figure 4. BILSTM-Attention mechanism architecture.

utilizing scikit-learn's StandardScaler. During cross-vali-
dation, standardization parameters were calculated solely
on the training data for each fold and then applied to the
validation and test sets, therefore avoiding information
leakage.

2.2.2. Addressing class imbalance

We utilized the Synthetic Minority Over-sampling
Technique with Edited Nearest Neighbors (SMOTE-
ENN), a hybrid resampling technique [25]. SMOTE-ENN
was utilized just on the training data within each cross-
validation fold. Subsequent to resampling, the data was
re-standardized. The final resampled training datasets at-
tained an approximate class balance (ratio = 1:1).

2.3. Model Architecture
2.3.1. LSTM Cell

Typically, LSTM layers include of memory blocks re-
currently coupled in a memory unit or cell. These cells are
constructed of gates to determine whether to forget past
concealed states of the memory cell and further update the
cells, hence enabling the network to exploit temporal in-
formation [16]. An LSTM cell as represented in Figure 2
with input feature x: takes input data x, at time t, so that
an input gate regulates the flow of the input data to the
cell. A forget gate regulates when to forget contents of the
internal state of the cell, and the output gate governs flow
to the output. This architecture permits modeling of com-
plicated temporal dynamics in patient health status.

Attention Layer:
Scaled dot-preduct attention

Third LSTM Layer:
32 units, dropout=0.4

Batch Normalization

Dense Layer 1:
64 neurons, ReLU activation,
dropout=0.4

Dense Layer 2:
32 neurons, ReLU activation,
dropout=0.4

Output Layer:
1 neuron, sigmoid activation

2.3.2. Bidirectional LSTM architecture

The Bidirectional Long Short-Term Memory
(BiLSTM) combines two parallel LSTM layers to form a
forward and backward loop, as seen in Figure 3. The goal
is for the network to take advantage of previous and future
information through the forward and backward sequences
to generate predictions. In this situation, current infor-
mation has previous information as dependencies and also
related to future information. [16] The forward and back-
ward sequences respectively are illustrated by the gray
and green arrows in Figure 3.

2.3.3. Bidirectional LSTM with Attention mechanism

We constructed a deep learning architecture utilizing
Bidirectional Long Short-Term Memory (BiLSTM) net-
works enhanced by an attention mechanism, as depicted
in Figure 4. The design processes 28-dimensional feature
vectors via a hierarchical structure consisting of three re-
current layers succeeded by completely connected layers.
The input features are initially reshaped and subsequently
processed through two stacked BiLSTM layers, including
128 and 64 units per direction, respectively. Each layer is
regularized using dropout (0.4) and recurrent dropout
(0.2), followed by batch normalization to enhance training
stability. A scaled dot-product attention method is subse-
quently employed to extract the most pertinent temporal
features from the BiLSTM outputs, enabling the model to
concentrate on essential patterns within the sequence data.
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Table 1. Performance metrics and mathematical definitions.

Metric Formula Description
Accuracy (TP + TN) Overall correctness of the model; proportion
(TP + TN + FP + FN) of all correct predictions

Precision TP Of all positive predictions, how many were
(TP + FP) actually positive

Recall (Sensitivity) TP Of all actual positives, how many were
(TP + FN) correctly identified

Specificity N Of all actual negatives, how many were
(TN + FP) correctly identified

F1-Score (Precision X Recall) Harmonic mean of precision and recall;

(Precision + Recall) balances both metrics
MCC (TP X TN — FP X FN) Correlation between predicted and actual
/(TP + FP)(TP + FN)(TN + FP)(TN + FN) classes; handles imbalanced data well
AUC-ROC Area under ROC curve, which plots the True Measures ability to distinguish between

Positive Rate (Sensitivity) against the False

Positive Rate (1-Specificity)
classification thresholds.

at

classes across all thresholds; 1.0 = perfect, 0.5

various =random

The attention-weighted representations undergo pro-
cessing via a unidirectional LSTM layer of 32 units, suc-
ceeded by two dense layers containing 64 and 32 neurons,
respectively, employing ReLU activation and dropout reg-
ularization. A sigmoid-activated output neuron generates
the binary classification prediction. This architecture inte-
grates the bidirectional context modeling of BiLSTM lay-
ers, the selective emphasis of attention mechanisms, and
the regularization advantages of dropout and batch nor-
malization to attain strong performance in the classifica-
tion problem. The architecture contains approximately
528,000 trainable parameters.

2.3.4. Training Configuration

The model utilized the Adam optimizer with a learn-
ing rate of 0.001 and employed binary cross-entropy as the
loss function, processing data in batches of 32 samples.
The training was set for a maximum of 50 epochs, includ-
ing various regularization techniques to mitigate overfit-
ting and improve generalization. In addition to the drop-
out and batch normalization layers incorporated into the
architecture, we utilized early stopping with a patience of
15 epochs to terminate training when validation perfor-
mance stagnated, as well as a learning rate reduction
callback with a patience of 7 epochs to adaptively modify
the learning rate upon reaching performance plateaus.
This thorough training setting facilitated rapid conver-
gence while preserving model resilience and averting
overfitting to the training data.

2.4. Baseline models for comparison

To assess the efficacy of our proposed BiLSTM-atten-
tion architecture, we evaluated its performance against a
variety of baseline models, including both conventional
machine learning and alternative deep learning methodo-

logies. The conventional machine learning baselines com-
prised Logistic Regression [26] with L2 regularization for
linear classification benchmarking, Random Forest [27]
with 100 trees to encapsulate non-linear relationships via
ensemble learning, and XGBoost [28] with 100 boosting it-
erations to utilize gradient boosting for improved predic-
tive efficacy. Furthermore, we employed alternative deep
learning architectures, including a conventional LSTM
network [17] devoid of attention mechanisms to evaluate
the impact of the attention layer, and a 1D Convolutional
Neural Network [29] to assess the efficacy of convolutional
feature extraction in contrast to recurrent processing. This
thorough comparison allowed us to illustrate the merits of
our proposed architecture across several modeling para-
digms and emphasize the distinct advantages of integrat-
ing bidirectional recurrent processing with attention
mechanisms.

2.5. Model training and validation

To ensure an in-depth evaluation of our proposed ar-
chitecture, we established a rigorous training and valida-
tion system aimed at assessing model performance across
various dimensions while mitigating overfitting and data
leaking. This method integrated rigorous cross-validation
techniques with meticulously chosen performance criteria
to deliver a comprehensive evaluation of categorization ef-
ficacy.

2.5.1. Cross-Validation strategy

Stratified 10-fold cross-validation was utilized as the
principal validation strategy to guarantee accurate perfor-
mance assessment across various data subsets. To uphold
the integrity of the validation process and avert data leak-
age, SMOTE-ENN was implemented just on the training
partitions of each fold, guaranteeing that the synthetic
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Figure 5. Correlation Heatmap.

oversampling and under-sampling methods did not com-
promise the validation sets. This method enabled us to
tackle class imbalance while maintaining the independ-
ence of test data in each fold.

2.5.2. Performance metrics

The model's performance was assessed utilizing a hi-
erarchical array of assessment measures to encapsulate
several dimensions of classification quality. Accuracy and
AUC-ROC functioned as the principal metrics, offering
comprehensive assessments of proper categorization and
discriminative capability across diverse decision thresh-
olds. Secondary measures like precision, recall, F1-score,
Matthew’s correlation coefficient (MCC), and specificity
supplemented this analysis, offering a thorough evalua-
tion of the model's performance concerning true positives,
false positives, true negatives, and false negatives. The
mathematical definitions of each performance metric are
provided in Table 1, where TP = True Positives, TN = True

Negatives, FP = False Positives, and FN = False Negatives.

2.6. Statistical significance testing

We performed thorough hypothesis testing on the
cross-validation results to ascertain the statistical validity
of performance disparities between our suggested model
and baseline techniques. Paired t-tests and Wilcoxon
signed-rank tests were undertaken to evaluate the statisti-
cal significance of observed performance enhancements,
with all analyses performed at a significance level of o =
0.05. Cohen's d effect sizes were computed to measure the
extent of performance disparities, offering insight into
both the statistical significance and practical relevance of
the gains.

2.7. Explainable Al for interpretability

The study utilized the SHAP technique of explainable
artificial intelligence to provide global and localized expla-
nations for predictions and feature relationships. SHAP
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Table 2. Comprehensive performance comparison of machine learning and deep learning models for T2DM risk prediction.

Model Accuracy Precision Recall F1 MCC AUC-ROC
XGBoost 0.9403 + 0.9622 + 0.9253 + 0.9431 + 0.8817 + 0.9894 +
0.0101 0.0173 0.0201 0.0096 0.0200 0.0034
Random Forest 0.9361 + 0.9599 + 0.9197 + 0.9389 + 0.8738 + 0.9875 +
0.0101 0.0183 0.0277 0.0103 0.0195 0.0029
Standard LSTM 09717 + 0.9792 + 0.9677 + 0.9734 + 0.9433 + 0.9964 +
0.0068 0.0077 0.0076 0.0064 0.0138 0.0016
Logistic Regression 0.9591 + 0.9655 + 0.9578 + 0.9616 + 0.9179 + 0.9943 +
0.0063 0.0080 0.0092 0.0060 0.0127 0.0017
CNN-1D 0.9777 + 0.9881 0.9700 + 0.9790 + 0.9555 + 0.9977 +
0.0040 0.0035 0.0067 0.0039 0.0080 0.0007
BiLSTM-Attention 0.9845 + 0.9880 + 0.9830 = 0.9855 * 0.9689 0.9985 +
0.0039 0.0032 0.0055 0.0036 0.0077 0.0006
employs Shapley values from game theory to clarify fea- 3. Results

ture significance in machine learning models.  Ad-
vantages include the supply of contrasting explanations, a
solid theoretical basis, and thorough clarifications evenly
distributed among feature values. feature values.

2.8. Ethical Considerations

This research employed a publicly accessible syn-
thetic dataset of entirely de-identified simulated records.
Due to the lack of actual data, a formal Institutional assess-
ment Board assessment was not mandated according to
laws governing research with publicly available, non-hu-
man-subject data. All research protocols complied with
ethical standards for responsible Al development in
healthcare.

3.1 Correlation Analysis

Figure 5 provides a Pearson correlation heatmap dis-
playing the pairwise correlations among all features in the
dataset. The study reveals numerous notable relationships
important to T2DM risk prediction. Strong positive associ-
ations were detected across pregnancy-related problems,
particularly amongst Elevated HbAlc, Abnormal OGTT
findings, Large for Gestational Age, and Macrosomia (r >
0.60), suggesting these variables typically co-occur in high-
risk pregnancies. Lifestyle factors including Physical Inac-
tivity, Unhealthy Diet, and Postpartum Obesity revealed
modest positive relationships with each other (r = 0.40-
0.55), showing clustering of modifiable risk behaviors. The
target variable, T2DM Risk, showed the highest connec-
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Figure 7. Top 10 features by Mean Absolute SHAP value.
Table 3. Statistical significance testing.
Comparison Metric t-statistic p-value Significance Effect Size (d)
vs. Random Forest ACCURACY 16.162 0.0000 p<0.001 5.804
AUC_ROC 9.312 0.0000 p<0.001 3.656
F1 15.814 0.0000 p<0.001 5.834
MCC 16.312 0.0000 p<0.001 5.755
vs. XGBoost ACCURACY 10.740 0.0000 p<0.001 3.652
AUC_ROC 7.697 0.0000 p<0.001 2.597
F1 10.744 0.0000 p<0.001 3.706
MCC 10.598 0.0000 p<0.001 3.593
vs. Standard LSTM ACCURACY 8.031 0.0000 p<0.001 2.234
AUC_ROC 6.944 0.0001 p<0.001 1.805
F1 8.254 0.0000 p<0.001 2.313
MCC 7.692 0.0000 p<0.001 2.165
vs. Logistic Regression =~ ACCURACY 13.903 0.0000 p<0.001 4.880
AUC_ROC 8.895 0.0000 p<0.001 3.326
F1 13.620 0.0000 p<0.001 4.898
MCC 13.977 0.0000 p<0.001 4.845
vs. CNN-1D ACCURACY 1.146 0.2812 not significant 0.419
AUC_ROC 1.340 0.2131 not significant 0.602
F1 1.259 0.2396 not significant 0.423
MCC 1.043 0.3243 not significant 0.398

tion with History of GDM Recurrence (r = 0.32), followed
by Postpartum Obesity (r = 0.28) and Insulin Treatment
during pregnancy (r = 0.26). Notably, most features dis-
played low to moderate intercorrelations (r < 0.50), sug-
gesting minimal multicollinearity concerns for the predic-

tive models. These connection patterns correspond with
recognized clinical understanding that recurrent GDM
and postpartum metabolic variables are significant drivers
in the development from GDM to T2DM.
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Figure 8. SHAP feature importance plot for the model's predictions.
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Figure 9. SHAP waterfall plots for low-risk case.
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Figure 10. SHAP waterfall plots for high-risk case.
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Figure 11. SHAP waterfall plots for borderline case.

3.2. BILSTM-Attention performance

The thorough comparison demonstrates BILSTM-At-
tention's outstanding performance across all evaluation
parameters, notably excelling in precision (98.80%), which
is essential for reducing false positive predictions in clini-
cal environments. The model exhibits an exceptional equi-
librium between precision and recall (98.30%), attaining an
F1 score of 98.55% that markedly surpasses other baseline
methodologies. Table 2 presents a comprehensive perfor-

0.450 0.475 0.500 0.525 0.550 0.575 0.600
ELRX))

mance comparison of machine learning and deep learning
models for T2DM risk prediction. Figure 6 depicts a heat-
map visualization of the mean performance scores ob-
tained across different evaluation metrics.

3.3. Statistical significance analysis

The paired t-test analysis demonstrates that BILSTM-
Attention significantly outperforms all competing models
except CNN-1D across all key performance metrics. The
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most substantial performance advantage is observed
against Random Forest, with exceptionally large t-statis-
tics ranging from 9.312 to 16.312 and effect sizes between
d =3.656 and d = 5.834, indicating massive practical signif-
icance (p < 0.001). BiLSTM-Attention also shows highly
significant superiority over XGBoost (t-values: 7.697-
10.744, d = 2.597-3.706) and Logistic Regression (t-values:
8.895-13.977, d = 3.326-4.898), with all comparisons achiev-
ing p <0.001. The comparison with Standard LSTM reveals
significant but somewhat smaller differences (t-values:
6.944-8.254, d = 1.805-2.313, p < 0.0001), still representing
meaningful performance gains. Notably, when compared
to CNN-1D, BiLSTM-Attention shows no statistically sig-
nificant differences (p > 0.05) across all metrics, with small
effect sizes (d < 0.61), suggesting these two models per-
form comparably. Statistical significance testing results are
illustrated in Table 3.

However, BiLSTM-Attention achieves the highest
mean AUC-ROC score of 0.9985 + 0.0006, establishing it as
the best-performing model overall. These results provide
compelling statistical evidence that BiLSTM-Attention
represents the superior choice for this classification task,
demonstrating exceptional performance with the largest
effect sizes observed against Random Forest and consist-
ently outperforming traditional machine learning and
deep learning approaches.

3.4. SHAP-Based model interpretability

SHAP employs Shapley values from game theory to
provide local or global elucidations concerning feature sig-
nificance for any machine learning model [30], [31]. Ad-
vantages encompass SHAP enables contrastive explana-
tions, is underpinned by strong theoretical foundations,
and offers thorough explanations that are fairly distrib-
uted among feature values. SHAP requires significant
processing resources [32].

3.4.1. Global feature-importance

The Shapley value is defined as the marginal contri-
bution of a variable's value to prediction over all potential
"coalitions" or subsets of features [30]. Top 10 features by
Mean Absolute SHAP value are illustrated in Figure 7.

Figure 8 illustrates the SHAP feature importance val-
ues for predicting the risk of T2DM. Each point signifies a
distinct prediction, with the x-axis illustrating the SHAP
value (influence on model output) and the y-axis enumer-
ating features ordered by significance. The color gradient
signifies feature values, with red denoting high values and
blue indicating low values. Features are ranked from most
to least influential, with History of recurrence of GDM ex-
hibiting the greatest impact on predictions.

3.4.2. Individual prediction explanations
A SHAP waterfall plot depicts the expected SHAP
values for a specific sample, including all dimensions. The

model properties are oriented along the y-axis, with each
unique sample's corresponding value indicated in gray.
The SHAP value for each feature associated with this spe-
cific sample is displayed in the main panel, indicated by
an arrow for each row or feature. A row is designated as
red (blue) if the SHAP value elevates (diminishes) the pre-
diction f(xi) relative to the anticipated or mean projection.
This plot type offers a localized interpretation by concen-
trating on a singular sample. Figure 9-11 depicts the re-
sults of a SHAP waterfall plot following prediction.

4. Discussion
4.1. Primary findings

This study illustrates the methodological viability of
utilizing a bidirectional LSTM neural network with an at-
tention mechanism, integrated with SHAP explainability,
for predicting T2DM risk in women with a history of
GDM. By employing a meticulously designed synthetic
dataset that mirrors epidemiological trends from existing
literature, we attained remarkable discriminative efficacy
(AUC-ROC: 0.9968) while ensuring transparent and inter-
pretable predictions. This analysis yielded three principal
findings. The BILSTM-Attention architecture significantly
outperformed all baseline models, demonstrating large to
very high effect sizes and showing its technical superiority
in the synthetic data context. Secondly, SHAP analysis
identified recognized clinical risk factors and uncovered
actionable modifiable factors, illustrating that high predic-
tive performance can be attained without compromising
interpretability. The model exhibited remarkable stability
(AUC-ROC SD: 0.0021), indicating reliable performance
within the synthetic data context and uniformity across
various data subsets.

4.2. Methodological contributions

This study introduces multiple methodological ad-
vancements that enhance the domain of Al-driven diabe-
tes prediction. This is the inaugural application of the
BiLSTM-Attention architecture specifically for predicting
post-GDM diabetes, hence broadening the scope of deep
learning approaches beyond conventional uses. Secondly,
we incorporated SHAP explainability from the outset of
development instead of as an afterthought, guaranteeing
that interpretability was a fundamental design feature.
Third, we performed thorough comparative validation
against various baseline models, offering clear bench-
marking that situates our method within the current meth-
odological framework.

4.3. Potential clinical implications (Following real-world
validation)

Subject to successful validation on actual clinical data,
this methodology may facilitate significant enhancements
in postpartum care for women with a history of gestational
diabetes mellitus (GDM). Risk-stratified screening tech-
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niques may supplant uniform approaches, allowing for
more regular monitoring of high-risk women while allevi-
ating superfluous testing for those at reduced risk. Person-
alized intervention planning may focus on modifiable risk
factors found via SHAP analysis, hence formulating indi-
vidualized prevention plans instead of generic lifestyle ad-
vice. Patient-centered explainable forecasts may improve
collaborative decision-making by offering transparent jus-
tifications for risk evaluations that both patients and clini-
cians can comprehend and utilize. Optimized resource al-
location could channel limited healthcare resources to peo-
ple most likely to benefit, potentially enhancing both effi-
ciency and equity in care delivery. Nonetheless, it is cru-
cial to highlight that all these prospective advantages re-
main conjectural until substantiated by thorough real-
world investigations and prospective trials that demon-
strate genuine clinical efficacy and patient outcomes.

4.4. Limitations

Being dependent on synthetic instead of real clinical
data constitutes the principal limitation of this investiga-
tion. The synthetic dataset, although meticulously crafted
to mirror established epidemiological trends, fails to en-
capsulate the complete intricacy, diversity, noise, and con-
founding factors inherent in actual clinical settings. The
outstanding performance metrics (AUC-ROC: 0.9968) pre-
sumably indicate an upper limit that may not be attainable
when the model is utilized on real clinical data, which is
characterized by its intrinsic complexity and ambiguity.
The restricted external validity indicates that although
these findings illustrate methodological feasibility on con-
trolled data, they cannot be extrapolated to clinical prac-
tice without comprehensive real-world validation across
varied patient demographics and healthcare environ-
ments. The reduced clinical reality inherent in synthetic
generation inevitably lowers the intricate biological and
social processes contributing to diabetes development to
mathematical equations that may not accurately represent
genuine causative mechanisms. Moreover, the established
ground truth in synthetic data establishes deterministic
correlations between features and outcomes that are ab-
sent in actual clinical predictions, where outcomes are in-
trinsically uncertain and affected by unmeasured varia-
bles, potentially resulting in significant overestimation of
discriminative capability.

Various methodological selections place supplemen-
tary limitations on interpretation. Binary feature encoding
led to the loss of detailed information from continuous ob-
servations, potentially eliminating predictive signals. The
elevated parameter count in relation to sample size creates
apprehensions regarding possible overfitting, notwith-
standing the implementation of cross-validation tech-
niques. The application of SMOTE+ENN to rectify class
imbalance may have generated synthetic oversampling ar-
tifacts that distort performance metrics. The absence of

genuine longitudinal dynamics prevents the model from
accurately capturing the temporal patterns of risk factor
evolution that could be clinically significant.

Significant obstacles to clinical translation persist un-
resolved. The absence of real-world validation indicates
that the model has not been evaluated on actual patients
in clinical environments. The obstacles to implementation,
including as issues in EHR integration, workflow disturb-
ance, computing demands, and regulatory approval pro-
cesses, remain unexamined. The generalizability across di-
verse demographics, healthcare systems, and geographic
regions is currently uncertain. The clinical value of this ap-
proach—specifically, its impact on patient outcomes—re-
mains unknown and necessitates prospective randomized
trials for validation.

This study should be regarded as a methodological
proof-of-concept illustrating computational feasibility ra-
ther than a therapeutically viable instrument. Clinical
adoption necessitates stringent real-world validation, pro-
spective trials evidencing enhanced results, and regula-
tory endorsement prior to any patient care applications.

4.5. Future research directions

The key subsequent step is the authentication of au-
thentic clinical data from various healthcare systems. This
validation must evaluate actual performance metrics on
authentic patient records, calibration across various risk
strata and subpopulations, temporal stability as clinical
practices and populations change, and direct comparison
with clinical judgment and existing risk assessment instru-
ments. In the absence of this validation, all further devel-
opments are merely theoretical endeavors lacking practi-
cal significance. Conducting multi-site validation across
various healthcare systems, geographic areas, and patient
demographics is crucial for establishing generalizability
and identifying potential sources of performance variation
or algorithmic bias. Furthermore, augmenting the existing
system to include temporal modeling for time-to-event
prediction will allow doctors to derive accurate timeline
estimates for T2DM onset, thereby enabling more strategi-
cally timed intervention approaches.

4.6. Comparative performance analysis

The performance of our model on synthetic data
(AUC-ROC: 0.9968) much surpasses that of previously re-
ported models in real-world post-GDM populations
(AUC-ROC: 0.70-0.92). This comparison should be ap-
proached with some caution, as performance on synthetic
data likely indicates an upper limit that may not be attain-
able with actual clinical records due to intrinsic noise,
missing data, and unmeasured confounders. The synthetic
data environment mitigates numerous real-world obsta-
cles that commonly constrain model efficacy, such as
measurement inaccuracies, insufficient documentation,
inconsistent data quality across healthcare systems, and

Scientific Journal of Engineering Research 2026, 2, 1

https://journal.futuristech.co.id/index.php/sjer



Prashanthan and Prashanthan, Interpretable Deep Learning for Type 2 Diabetes Risk Prediction in Women Following Gestational Diabetes 90
Table 4. Comprehensive comparison of previous studies for T2DM risk prediction with GDM history.
Dataset Data Best Performance
Study Size Type Scope Key Features Algorithm Metrics
[33] N/A Synthetic Test AIRS algo- Imbalanced AIRS Classification
rithm for predicting dataset recall: 62.8%
GDM to T2D transi- Clinical and Better than
tion on im-balanced demographic LogReg & SVM
datasets features
[34] 104 Real- Assess if lipidomic Age, BMI Clinical Net
world + profiling enhances Pregnancy prediction reclassification
Omics T2DM risk predic- fasting glucose model index: +22.3%
tion in women post- Postnatal fasting Three lipid
GDM (median 8.5 glucose species
years follow-up) Triacylglycerol, significantly
total cholesterol associated with
CE 20:4, PE(P- T2D progression
36:2), PS 38:4
[35] 257 Real- Create simple, easy- BMI in early Lasso Cox R2:0.23-0.33
world to-calculate risk sco- pregnancy regression C-index: 0.75
re for long-term dia- Insulin
betes risk after GDM treatment
(20-year prospective during
follow-up) pregnancy
Family history
of diabetes
Lactation
duration
[5] 1,035 Real- Develop metabolo- 21 metabolites Decision Tree Training set
world + mics signature to identified via accuracy: 83.0%
Omics predict T2DM from metabolomics Testing set
single fasting blood Baseline fasting accuracy: 76.9%
sample at 6-9 weeks plasma AUC-ROC: 0.77
postpartum
[4] 140 Real- Discover novel pre- 7 lipid Decision Tree AUC-ROC: 0.92
(review)/ world + dictive biomarkers metabolites Accuracy: 91%
1,035 Omics and early-stage pa- (review) Sensitivity: 87%
(additional) thophysiology  for 21 lipolytic Specificity: 93%
GDM to T2DM tran- metabolites
sition (additional)
Sphingolipid
metabolism
markers
[36] 1,263 Real- Develop nomogram Family history Multivariate AUROC: 82.8%
world for incident risk of of diabetes Cox (95% CI: 78.1%-
postpartum T2DM Pregnancy- proportional 87.5%)
using non-invasive induced hazards 2-year AUROC:
clinical characteris- hypertension model 85.9%
tics Pre-pregnancy 3-year AUROC:
BMI 83.2%
2-hour glucose
at 26-30 weeks
[37] 1,035 Real- Identify  metabolic Fasting plasma Not specified Median AUC:
world + signature in early metabolites 0.883
Omics postpartum  period Amino acids 95% CI: 0.820-

(6-9 weeks) predic-

0.945
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[38]

[39]

[40]

[41]

103
(review) /
754
(additional)

317

692

561

6,092

78

607

Real-
world +
Omics

Real-
world

Real-
world

Real-
world

Real-
world

Real-
world

Real-
world

ting T2DM transi-
tion

Evaluate if postpar-
tum circulating miR-
NAs enhance T2DM
prediction beyond
traditional clinical
factors

Develop clinical dia-
betes risk prediction
model for prediabe-

tic women with
prior GDM from
DPP study

Quantify T2DM and
dysglycemia  risk
using pre-pregnan-
cy and pregnancy
factors

Predict T2DM risk
using midpregnancy
clinical features

Use ML to predict
T2DM based on glu-
cose metabolism
patterns during
pregnancy

Identify key factors
determining T2DM
development in
women with GDM
history using ML
techniques

Predict non-atten-
dance at postpartum
glucose  screening
and subsequent
T2DM risk

Diacyl-glycero-
phospholipids
Sphingolipids
Acyl-alkyl-
glycero-
phospholipids
754 plasma
circulating
miRNAs
miR-369-3p (key
biomarker)
Age, BM],
fasting glucose,
lipids

11 baseline
clinical variables
Final model: 4
variables
(fasting glucose,
HbAlc, BMI,
treatment arm)
GDM status
Pre-pregnancy
BMI

PDWR

Midpregnancy
BMI

GDM diagnosis
Age, parity,
gravidity

GCT and OGTT
results
Gestational age
at delivery
Birthweight
Age, BMI
Fasting glucose
Insulin
secretion/ action
indicators

(34 features — 6
after selection)

Antenatal
factors: age,
parity

BMI, smoking
status

Fasting glucose
at OGTT

Penalized
LogReg +
bootstrapping

Cox
proportional
hazards
regression

Poisson
Regression

CatBoost

XGBoost

L2-penalized
LogReg

ML model
(not
specified)

e p<0.001

e AUC: 0.92 (with
miRNAs)

e AUC:0.83
(clinical only)

e Sensitivity: 91%

o Specificity: 89%

e C-index: 0.68
(bias-corrected)

e RR (T2DM):
12.07 (95% CIL:
4.55-32.02)

¢ RR
(Dysglycemia):
3.02 (95% CI:
1.14-7.98)

e AUC-ROC: 0.86

e 95% CI: 0.72-0.99

e AUC:0.85

e Accuracy: 91%
e Sensitivity: 74%
e Specificity: 74%

o AUC:0.884
(LogReg)

e AUC:0.831
(Naive Bayes)

e AUC:0.795
(Decision tree)

e Accuracy: 84.0%

e F1-Score: 0.828-
0.836

o AUC:0.72

e Sensitivity: 70%

e Specificity: 66%
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[42] 1,299 Real-

world

Develop antenatal
and postnatal risk
prediction models
for T2DM in women
with GDM enrolled
in LIVING study

Evaluate Funda-
mental and ensem-
ble ML methods for
T2DM  prediction
using comprehensi-
ve risk factors

6,000 Synthetic

This
study

6,000 BiLSTM-Attention

for  high-accuracy
T2DM  prediction
with comprehensive

features

Synthetic

Glucose test Not explicitly e Antenatal AUC:
results stated 0.76 (95% CI:
Medical history 0.72-0.80)
Biometric e Postnatal AUC:
indicators 0.85 (95% CI:
0.81-0.88)
e Accuracy:
70.82%
(antenatal),
76.10%
(postnatal)

28 clinical risk AdaBoost e F1-Score: 80.4%
factors including

Maternal

characteristics,

Genetic risk

factors and

Lifestyle factors

28 clinical risk BiLSTM- e AUC-ROC:
factors including Attention 0.9986

Maternal e Accuracy:
characteristics, 98.45%

Genetic risk e Precision:
factors and 98.80%

Lifestyle factors e Recall: 98.30%
Used SMOTE- e F1-Score: 98.55%
ENN for o MCC: 96.89%
balancing

the intricate interactions of unmeasured social and biolog-
ical variables. Consequently, although these findings illus-
trate the theoretical capabilities of the BILSTM-Attention
architecture, they should not be construed as proof of its
superiority over current models until equivalent valida-
tion on actual clinical data is conducted. Table 4 presents
a comparison of prior studies regarding T2DM risk predic-
tion in individuals with a history of GDM.

Table 4 presents a comprehensive comparison of pre-
vious studies on T2DM risk prediction in post-GDM pop-
ulations, enabling evaluation of our contribution within
the current literature. The comparison highlights several
interesting observations: First, addressing dataset charac-
teristics, previous research generally utilized real-world
clinical data with sample sizes ranging from 78 to 6,092
participants, while our study employed synthetic data
(n=6,000) specially tailored to replicate epidemiological
patterns. Second, in terms of methodological approaches,
prior research primarily relied on traditional machine
learning methods (Logistic Regression, XGBoost, Random
Forest) and statistical approaches (Cox regression, Poisson
regression), whereas our BiLSTM-Attention architecture
represents the first application of attention-augmented
deep learning to this clinical problem. Third, addressing
performance measures, our model achieved much higher
AUC-ROC (0.9986) compared to real-world research

showing AUC values between 0.68 and 0.92. However,
this performance gap should be evaluated cautiously, as
synthetic data inherently lacks the noise, missing values,
and unmeasured confounders prevalent in clinical da-
tasets. Fourth, addressing feature comprehensiveness, our
model includes 28 clinical risk factors covering pre-preg-
nancy, pregnancy, and postpartum stages, providing one
of the most comprehensive feature sets in the literature. Fi-
nally, the incorporation of SHAP explainability separates
our approach by offering both global feature priority rank-
ings and individual prediction explanations, addressing
the interpretability restrictions of earlier "black box" mod-
els. These comparisons demonstrate that while our
BiLSTM-Attention model achieves exceptional perfor-
mance on synthetic data, the true contribution lies in es-
tablishing a methodological framework that combines
high-performance deep learning with explainable Al,
which can be validated and refined using real-world clin-
ical data in future studies.

5. Conclusion

This study illustrates the methodological viability of
utilizing BiLSTM-Attention alongside SHAP explainabil-
ity for T2DM risk prediction in women with a history of
GDM. By employing meticulously crafted synthetic data,
we attained outstanding performance while preserving in-
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terpretability and transparency. This work serves as a
proof-of-concept for building a computational framework,
rather than a therapeutically viable tool for patient treat-
ment. The integration of high-performance deep learning
with explainable Al signifies a transformative change to-
wards transparent prediction systems capable of mitigat-
ing enduring issues associated with black-box algorithms
in healthcare. This study establishes a methodological
framework for forthcoming real-world validation research
crucial for clinical translation. The freely accessible syn-
thetic dataset allow other researchers to replicate, evalu-
ate, and expand upon this methodological contribution,
thereby expediting innovation in this significant domain.

Through rigorous validation of clinical data, prospective
trials showcasing enhanced outcomes, meticulous consid-
eration of equity and fairness, and deliberate implementa-
tion that aligns with clinical workflows, Al-driven risk
stratification has the potential to revolutionize postpartum
care for women with a history of gestational diabetes
mellitus by facilitating earlier detection and tailored pre-
vention strategies. This study illustrates a possible ap-
proach to achieving that objective, while recognizing the
substantial validation efforts need to convert scientific ad-
vancements into quantifiable therapeutic benefits and en-
hanced patient outcomes.
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