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Abstract: The process of underwater image segmentation is also very difficult because the data collected 
by the underwater sensors and cameras is of very high complexity, and much data is generated and in that 
case, the data is not well seen, the color is distorted, and the features overlap. Current solutions, including 
K-means clustering and Random Forest classification, are unable to partition complex underwater images 
with high accuracy, or are unable to scale to large datasets, although the possibility of dynamically opti-
mizing the number of clusters has not been fully explored. To fill these gaps, this paper advises a hybrid 
solution that combines K-means clustering, Random Forest classification and the Simulated Annealing 
optimization as a complete end to end system to maximize the efficiency and accuracy of segmentation. K-
means clustering first divides images based on pixel intensity, Random Forest narrows its segmentation of 
images with features like texture, color and shape, and Simulated Annealing determines the desired num-
ber of clusters dynamically to segment images with minimal segmentation error. The segmentation error 
of the proposed method was 30 less than the baseline K-means segmentation accuracy of 65 percent and 
the proposed method segmentation accuracy was 95% with an optimal cluster number of 10 and a mean 
error of 7839.22. This hybrid system offers a large-scale, scalable system to underwater image processing 
that is robust and has applications in marine biology, environmental research, and autonomous underwa-
ter system exploration. 

Keywords: Underwater Image Segmentation; K-means Clustering; Random Forest; Simulated Annealing; 
Segmentation Accuracy. 
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1. Introduction 

Image segmentation underwater is a very important 
requirement in many industries such as environmental 
research, marine science, and autonomous underwater 
process. It is concerned with the processing of mass data 
of high-resolution image data, which is gathered by un-
derwater sensors and cameras. These images, however, 
are vulnerable to some challenges like low visibility, col-
or distortion and overlapping features, which make the 
process of segmentation hard. The nature of the data in 
the underwater world, its complexity and heterogeneity 
in general make traditional techniques, such as threshold-
ing and edge detection, inefficient, resulting in poor de-
lineation of the significant objects, such as marine life, 
ocean plants, or sea bottom topography [1]. 

Although better algorithms such as K-means cluster-
ing and Random Forest classification have been devel-
oped, the available solutions have failed to perform well 
with large datasets. Such approaches are either not scala-
ble to large data sets or do not have the capability to dy-
namically optimize the segmentation parameters. In ad-
dition, high quality segmentation in real time is a major 
issue as existing systems currently do not provide the 
accuracy and computation power needed to weekly ana-
lyse underwater image data in large volumes and within 
real-time [2, 3]. 

The ongoing battle to resolve this problem is in the 
complexity of underwater images by nature, and the con-
straints of the traditional segmentation methods. These 
techniques are frequently inadequate to deal with differ-
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ent underwater conditions including changes in lights, 
turbidity, and the dynamic character of marine condi-
tions. Also, it is not yet developed that the requirement of 
real-time processing or optimization of segmentation pa-
rameters is done in an adaptive way as per the require-
ments of real-world situations that make the existing so-
lutions ineffective in real-world and large-scale underwa-
ter exploration situations [4, 5]. 

To solve this ancient issue, we propose a hybrid so-
lution by relying on using the K-means clustering, the 
Random Forest classification, and the Simulated Anneal-
ing optimization. The proposed methodology leverages 
the benefits of each of the techniques: K-means to do the 
initial pixel-wise segmentation, Random Forest to refine 
the classes, and Simulated Annealing to dynamically 
adapt the number of clusters and reduce the error of 
segmentation. Combining the techniques, my method 
provides a scalable, efficient, and accurate solution break-
ing the shortcomings of traditional techniques, making 
sure that segmentation is of high quality in real-time ap-
plications [1, 2]. 

 
2. Related work  

Underwater image segmentation is a critical activity 
in underwater science, environmental reconnaissance, 
and autonomous underwater exploration. The challenge 
lies in the processing of the large volume of image data 
generated by underwater sensors prone to distortion 
caused by murky waters, light scattering, and color 
aberration. Different approaches over the years have been 
put forth and utilized in a bid to improve underwater 
image segmentation and classification. Nonetheless, the 
solutions available today are restricted in their capability 
to address the complexity and size of the underwater 
datasets, particularly real-time processing of large 
datasets. This literature review summarizes the major 
contributions to the field of underwater image 
segmentation concisely and identifies areas covered 
within our research. 
 
2.1. Image Preprocessing and Enhancement Techniques 

Initial research into underwater image segmentation 
has dealt with improved visibility primarily through 
image quality enhancement. Schettini and Corchs (2013) 
presented a comprehensive overview of techniques for 
image enhancement of underwater images, including 
color correction and contrast. These corrections are 
adequate to compensate for color changes and light 
absorption but are less effective at segmenting and 
labeling objects in the images, especially in the case of 
overlapping or complex underwater structures [6]. These 
improvement techniques are useful preprocessing 
techniques but insufficient to deal with image 
segmentation at large scale.  

2.2. Clustering Techniques in Underwater Image 
Segmentation 
One of the most studied techniques utilized in 

underwater image segmentation is K-means clustering. 
K-means clustering to separate underwater images 
according to pixel intensity so that the basic separation of 
different image regions can be achieved [7]. The method, 
however, is not adequate in handling overlapping objects 
and changing illumination. Clusters must be predefined 
in number, which is not desired in real underwater 
images where segmentation objects are not known or are 
in flux. To ease this, other methods have sought to 
dynamically optimize clustering. Islam et al. (2020) 
presented a yardstick data on semantic segmentation of 
underwater photos, overcoming issues like, poor 
visibility and distortion of underwater pictures. Their 
study aimed at developing a dataset that can be useful in 
the assessment of different segmentation methods, which 
will contribute to the development of the underwater 
image analysis. This dataset has proven useful in testing 
and building new segmentation algorithms due to the 
quality of the labelled ground truth data. This endeavor 
is in line with the current efforts to enhance the accuracy 
and strength of segmentation in the sea settings [8].  

 
2.3. Random Forest for Classification and Refinement 

Following clustering, Random Forest classification 
has also been applied to further improve segmentation 
results. Pavoni et al. (2022) used Random Forest for 
classifying the K-means cluster segmented areas to 
improve segmentation accuracy by annotating these 
areas in feature learning [9]. Their method showed the 
benefit of machine learning in improving segmentation 
accuracy. But similar to all the other conventional 
techniques, theirs did not scale to massive data and was 
computationally expensive. In addition, though 
classification was enhanced, segmentation remained 
poorly maximized, particularly when handling noisy or 
incomplete data. Optimizing Segmentation using 
Simulated Annealing. 
 
2.4. Optimizing Segmentation with Simulated Annealing 

Optimization methods like Simplied Annealing have 
been utilized in efforts to optimize the results of 
segmentation. Simulated Annealing to high-complexity 
optimization problems by trying various solutions and 
moving closer step by step towards an optimal solution 
[10]. Simulated Annealing was employed in the 
optimization of K-means cluster numbers in underwater 
image segmentation with the optimization of the 
segmentation algorithm. The process is generally time-
consuming and parameter-heavy to achieve optimal 
results. The process of clustering with Simulated 
Annealing and succeeded in proving that they can 
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improve segmentation accuracy but also in proving that 
the process was not computationally viable for big data 
[9]. Big Data Challenges of Underwater Image 
Segmentation With increasing volume, variety, and 
velocity of underwater image data, the ability to process 
and analyze large amounts of data become significant. 

 
2.5. Big Data Challenges in Underwater Image 
Segmentation 

Lou et al. (2023) emphasized that machine learning 
is increasingly becoming important in efficient processing 
and analysis of large volumes of ocean data. Their work 
showed that complex marine environments could also be 
improved by intelligent algorithms to extract features, 
classify and recognize patterns. They highlighted that the 
conventional methods of analysis of data cannot cope 
with large volumes and diversity of ocean information. 
The former suggests that hybrid machine learning 
models can be used to enhance the accuracy and 
scalability of underwater image segmentation, which is 
the goal of the current research [11].  

The existing approaches are not able to meet the 
challenge of coping with the complexity of handling large 
ocean data in real time, which is a central issue to 
autonomous underwater vehicles and ocean monitoring 
systems. Our research solves this issue by combining K-
means clustering, Random Forest classifier, and 
Simulated Annealing optimization, providing a tractable 
solution to process vast amounts of underwater image 
data. 

 
2.6. Research Gaps and Contributions 

Research Gaps and Contributions Despite 
advancement in underwater image segmentation, there 
are a variety of research gaps. The majority of the existing 
methods tackle either one type, i.e., clustering or 
classification, but not both within a single framework. 

Apart from that, optimization techniques but have 
yet to present in detail how dynamic real-time cluster 
changes can be obtained [6, 12]. Furthermore, in growing 
efforts at segmenting high-resolution underwater 
datasets' images, scalability and real-time processing 
remain relevant concerns, particularly for autonomous 
underwater vehicles [13]. Our research surmounts the 
abovementioned research limitations by combining K-
means clustering, Random Forest classification, and 
Simulated Annealing optimization into an end-to-end 
solution. The combination is capable of enhancing 
underwater image segmentation accuracy and efficiency 
and creating a scalable method for underwater image 
datasets processing. 

3. Methodology 
Under this study, we introduce a method to enhance 

underwater image segmentation using integration of K-

means clustering, Random Forest classification, and Sim-
ulated Annealing optimization. The method is framed in 
accordance with the Big Data idea, i.e., addressing the 
challenge of dealing with large, high-complexity data 
recorded by underwater sensors and imaging devices 
[13]. This section provides information about how Big 
Data characteristics, sources, and approaches are used to 
achieve the research outcomes. 

Big Data is understood in the terms of the Volume, 
Variety, and Velocity of data and how they affect the pro-
cessing and analysis of the data. They are especially ap-
propriately suited in the scenario of underwater image 
segmentation, where a large amount of varied data is im-
aged at high velocities, usually in real time [14]. 

 
3.1 Characteristic Underwater Image Segmentation and 
Enhancement 

• Volume: We can get large datasets of the under-
water image segmentation [8].  

• Heterogeneity: All of the data from the different 
sources like sensors and high-resolution cameras 
need to be processed individually. We incorpo-
rated K-means clustering for pixel intensity-
based segmentation and Random Forest classifi-
cation for segment classification based on fea-
tures like texture, shape, and color [15]. 

• Velocity: In an effort to achieve real-time pro-
cessing of underwater images, Simulated Anneal-
ing was used to dynamically optimize the seg-
mentation in a way that minimized the errors in 
segmentation and yet provided a solution that 
can process data at high velocities [16]. 

• Veracity: Data accuracy is enhanced by incorpo-
rating preprocessing activities like the removal of 
noise and color normalization, which are vital if 
segmentation and classification are to be success-
ful in an underwater setting [17]. 

• Value: Through segmentation facilitated by Sim-
ulated Annealing optimization, one possesses 
useful information regarding underwater condi-
tions and offers real-time decision-making capac-
ity to autonomous underwater vehicles [18]. 

 

In our work, the primary source of Big Data is un-
derwater image sensors, i.e., high-resolution underwater 
images from underwater cameras and other sensors in 
the environment. Underwater images are warped de-
pending on underwater conditions such as scattering of 
light and lack of visibility. Because of these warps, seg-
mentation is tough to achieve accurately, and therefore 
preprocessing methods such as color correction and con-
trast enhancement are employed to improve the quality 
of the images prior to segmentation [19]. 

Besides that, other sensor data such as depth, tem-
perature, and so on are also available in the dataset for 
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the better understanding of the underwater scene. Such 
sensor data put context to underwater image data and 
add more dimensions of feature extraction to the segmen-
tation process [20]. 

 
3.2 Underwater Image Segmentation and Enhancement 
Dataset 

The significant data utilized in the present study is 
the benchmark dataset of project "An Underwater Image 
Enhancement Benchmark Dataset and Beyond" of Li 
Chongyi. The dataset consists of underwater images with 
high quality and labeled ground truth for each image, 
which are precious during training and testing segmenta-
tion algorithms for underwater images. The dataset is 
created to address the inherent issues related to under-
water image processing, including low visibility, color 
distortion, and image degradation [21]. 

The data set is public use, and its main function is to 
act as a reference benchmark for comparing the underwa-
ter image segmentation algorithm and the enhancement 
performance [22]. You can download this data set from 
this link: https://li-
chongyi.github.io/proj_benchmark.html. 
 
3.3. Mathematical Formulations and Tree Structures 

In employed a combination of K-means clustering, 
Random Forest classification, and Simulated Annealing 
optimization for the application of underwater image 
segmentation in the current study. Below are the mathe-
matical formulations and tree structures for each method 
along with the formal basis of techniques used [23]. 
 
3.3.1. K-means Clustering 

K-means clustering is a machine learning algorithm 
that is unsupervised in nature with the aim to segment 
data into k clusters based on pixel intensity values in the 
case of image data shown in figure 1. The algorithm 
chooses the cluster centers such that it minimizes the sum 
of squared distances between every data point (pixel) and 
to which it is assigned [24]. The objective function in K-
means clustering is: 
 

 𝐽! =##𝑟"#

!

#$%

&

"$%

∥ 𝑥" − 𝜇# ∥
' (1) 

 
Where n number of pixels of the image. K is number 

of clusters. 𝑟"# is a binary indicator of the assignment of 
pixel 𝑥" to cluster j (1 if 𝑥" is assigned to cluster j, 0 other-
wise). 𝜇# is the centroid (mean) of cluster j. 𝑥" is the fea-
ture vector of pixel i (in this case, pixel intensity) [25]. 

 The goal is to minimize the value of 𝐽!, the total in-
tra-cluster variance. This is done through iterative update 
of cluster centroids, preferably by the Expectation-
Maximization (EM) algorithm.  

The second is to show the original image used for 
segmentation and classification. The original image is 
helpful in bringing out raw data that is processed.  

The K-means clustering algorithm is employed to 
segment the underwater image into different regions 
based on pixel intensity. The cluster centroids and seg-
mentation result are shown in the Figure 2. The image is 
segmented into different regions following the applica-
tion of K-means clustering. The regions are labeled based 
on pixel intensity and presented in grayscale [26]. 

 

 
Figure 1. K-means Clustering Methods. 
 
 

 

 
Figure 2. Optimized Segmentation Result.

https://li-chongyi.github.io/proj_benchmark.html
https://li-chongyi.github.io/proj_benchmark.html
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Figure 3. Random Forest Classification. 
 
3.3.2. Random Forest Classification 

Once the image is segmented using K-means cluster-
ing, Random Forest classification is employed for the 
classification of each segmented region. Random Forests 
consist of multiple decision trees, and each decision tree 
predicts a data point (pixel region) based on its features 
[27]. The Random Forest classifier (Figure 3) learns to 
make classifications by building T decision trees, each of 
which ℎ((𝑥) predicts a classification label for the input 
vector x. The overall output 𝑦- is the majority vote over all 
trees: 
 

 𝑦- = 𝑚𝑜𝑑𝑒(ℎ%(𝑥), ℎ'(𝑥), … , ℎ((𝑥)) (2) 
 
Each decision tree ℎ((𝑥) is learned from a randomly 

sampled subset of features and training instances, so 
Random Forests are immune to overfitting and very 
skilled at predicting faint underwater features such as 
marine fauna and seafloor morphology. 
 
3.3.3. Simulated Annealing Optimization 

Simulated Annealing (SA) is used to optimize the 
number of cluster k in K-means segmentation, reducing 
the segmentation error. The function to be minimized is 
the Mean Squared Error (MSE) between the image and its 
segmentation: 
 

 𝑀𝑆𝐸(𝑘) =
1
𝑛#(𝐼(𝑥") − 𝐼;(𝑥" , 𝑘))'

&

"$%

 (3) 

 
Where, n is the estimated intensity for pixel. 𝐼(𝑥") in 

the segmented image with k clusters. 𝐼;(𝑥" , 𝑘) is the num-
ber of pixels. 

The objective is to minimize the MSE by changing k, 
the number of clusters. The Simulated Annealing algo-
rithm works by attempting different values for k and ac-
cepting or rejecting a value based on the following prob-
ability function: 
 

 𝑃(𝑘 → 𝑘)) = min A1, exp A
−𝛥𝐸
𝑇 GG (4) 

 
Figure 4. Simulated Annealing Optimization. 
 

Where, 𝑘 → 𝑘) is the transition from the current 
number of clusters k to a new number of clusters 𝛥𝐸 is 
the difference in the energy (or error) of current and new 
T is a temperature parameter, which decreases over time. 
When the temperature T reduces, the odds of accepting a 
poorer solution (𝑘)) get smaller, as it ensures convergence 
to the optimal value for k. Simulated annealing optimiza-
tion is shown in Figure 4. 
 
3.3.4. Decision Tree Structure in Random Forest 

Random Forest Decision Tree is built recursively on 
dividing the data based on feature values. A binary tree 
is created where each node is a decision on a feature and 
the edges are the outcome of the decision. At each node a 
feature fi is chosen to split the data. This is usually 
achieved by maximizing information gain or Gini impuri-
ty. In two-class classification, the rule at node n. 
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Figure 5. Decision Tree Structure in Random Forest. 
 
 			𝐼𝑓	𝑓"(𝑥) < 𝜃, 	𝑔𝑜	𝑙𝑒𝑓𝑡. 	𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 	𝑔𝑜	𝑟𝑖𝑔ℎ𝑡. (5) 
 

Where, 𝑓"(𝑥) is the feature value of node n‚ θ is the 
cut point for feature 𝑓"‚ The left branch and the right 
branch are two subsets of the data based on the condi-
tion. 
 
The main components of a decision tree are: 

• Root Node: The feature leading to the best split 
of the data under a decision rule (e.g., Pixel In-
tensity (I)). 

• Branches: The choice directions based on feature 
values, guiding the data along the tree. 

• Leaf Nodes: The final classification labels, which 
tell the class of the segmented region. 

 
Each tree in the Random Forest (Figure 5) is con-

structed independently, and the final classification will 
be a majority vote across all trees. 
 
3.3.5 Simplified Decision Tree Structure 

Suppose we are segmenting regions of an underwa-
ter image into two classes: Marine, Species or Ocean 

Floor. The decision tree can be structured shown in Fig-
ure 6. 

a) Root Node: The tree starts with Pixel Intensity (I), 
and the root split divides the data into two sets:  
Pixel Intensity (I) < 150: The pixel intensity is less 
than 150, which leads to the left branch.  
Pixel Intensity (I) ≥ 150: The pixel intensity is 150 
or above, leading to the right branch. 

b) Left Subtree (Pixel Intensity < 150): 
If the Texture (T) is less than 0.5, the region will 
be classified as Marine Species. 
If the Texture (T) is ≥ 0.5, the region is labeled as 
Ocean Floor. 

c) Right Subtree (Pixel Intensity ≥ 150): 
If the Texture (T) is < 0.7, the region is labeled as 
Marine Species. 
If the Texture (T) is ≥ 0.7, the region is labeled as 
Ocean Floor.  

 
3.3.6 Comparison of Clustered Images 

K-means cluster, Random Forest classification, and 
optimized K-means cluster output are compared (Figure 
7) in color code. They all use various color codes to show 
segmented regions to highlight their differences. The pic-
ture optimized with K-means clustering with k=10, whose 
number of clusters has been optimized. 

4. Results 
The overall objective of this work was to improve 

underwater image segmentation through the integration 
of K-means clustering, Random Forest classification, and 
Simulated Annealing optimization. The results reported 
here confirm the applicability of the integrated approach 
towards improving the accuracy of segmentation and 
overcoming the difficulties encountered in underwater 
images. 

 
 

 
Figure 6. Decision Tree. 
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Figure 7. Comparison of Clustered Images. 
 
 
 

 
Figure 8. K-means Clustering (with centers). 
 
 

 
Figure 9. K-means Clustering Segmentation. 

4.1. Segmentation Accuracy Improvement 
4.1.1. Baseline K-means Clustering 

Segmentation was first performed using K-means 
clustering, which split the underwater image pixels based 
on pixel intensity. The method is fast and faster, but it 
had a problem in segmenting complex underwater imag-
es accurately due to the natural pixel intensity similarities 
between different underwater components (e.g., sea floor, 
sea creatures, and water). Figure 8 shows the K-means 
clustering with centers. 

 

 
Figure 10. K-means Clustered Image (Color Coded). 
 
 

 
Figure 11. Random Forest Classification. 
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Figure 12. Random Forest Classified Image (Color Coded). 
 

 
Figure 13. Optimized Segmentation Result. 
 
4.1.2. K-means Segmentation Accuracy 

The baseline accuracy using K-means clustering was 
65%, so that the large proportion of regions in the un-
derwater image were segmenting or identified wrongly. 
K-means clustering segmentation and colored clustered 
image are shown in Figure 9 and 10. 
 
4.1.3. Segmentation with Random Forest 

After segmentation by K-means, a Random Forest 
classifier was  utilized  to  refine  it.  Random  Forest  calls 

 
Figure 14. Optimized K-means (k = 10). 
 
upon an ensemble of decision trees to classify the seg-
mented areas based on their attributes (e.g., pixel intensi-
ty, texture, and color). The process enhanced discrimina-
tion between complex features such as marine life, vege-
tation, and ground. Random forest classification and clas-
sified colored image are shown in Figure 11 and 12. 

Random Forest classifier contributed towards gain-
ing better segmentation accuracy through precise tagging 
of the regions based on feature learning from data. The 
method was still hindered by its ability to process large 
data and needed an optimized segmentation process. 

This Figure 12 illustrates the color-coded Random 
Forest classified image where every segment is classified 
based on learned features. 
 
4.2. Optimization using Simulated Annealing 

Simulated Annealing Optimization is done to fur-
ther improve segmentation procedure. K-means cluster-
ing's cluster number (k) was optimized employing Simu-
lated Annealing. Simulated Annealing algorithm altered 
the cluster number randomly based on the error in initial 
segmentation outcomes in a manner that would mini-
mize Mean Squared Error (MSE) between original and 
segmented images. 
The Figure 13 was to find the optimal number of clusters 
k which would minimize segmentation error and im-
prove segmentation accuracy. Segmentation Error Reduc-
tion: After employing Simulated Annealing optimization, 
the optimal number of clusters was achieved, and it led 
to 30% segmentation error reduction. Optimization sig-
nificantly improved the accuracy of the segmented region 
such that the segmentation effectively simulated  
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Figure 15. Segmentation Error vs. Number of Clusters. 

 
real underwater features. Optimized K-means (k=10) im-
age is shown in Figure 14. 
 
4.3. Final Segmentation Accuracy 

Segmentation Accuracy Maximized through the ad-
dition of K-means clustering, Random Forest classifica-
tion, and Simulated Annealing optimization, the final 
segmentation accuracy was 95%. That's an improvement 
from the baseline 65% segmentation accuracy using just 
K-means clustering. 

The 95% segmentation accuracy indicates that the 
method successfully segmented underwater image re-
gions well, from marine life, vegetation, and terrain, with 
very little misclassification. Segmentation Error Reduc-
tion: After Simulated Annealing optimization, the clus-
ters number was also optimized, and the segmentation 
error was decreased by 30%. Optimization helped in sig-
nificantly improving the accuracy of the segmented re-
gions, to the extent that the segmentation was more pre-
cise in describing the actual underwater features. 

 
4.4. Segmentation Error vs. Number of Clusters 

Finally, the Segmentation Error (MSE) is plotted ver-
sus the number of clusters k to represent the effect of dif-
ferent numbers of clusters on segmentation accuracy 
shown in Figure 15. We found the segmentation error 
7839.22. This indicates that increasing the number of clus-
ters decreases segmentation error up to the optimization 
of the segmentation. 

5. Future Work 
The paper suggests a strong underwater image seg-

mentation approach based on the integration of K-means 
clustering, Random Forest classification, and Simulated 
Annealing optimization. Future work opportunities are 
also provided for further improving the approach and 
further extending it: 

• Interfacing with Deep Learning: Since the meth-
od suggested hinges on the application of tradi-
tional machine learning techniques, interfacing 
with deep learning architecture such as Convolu-
tional Neural Networks (CNNs) can be used to 
enhance the quality of segmentation, particularly 
in realistic underwater environments. For exten-
sion in the future, CNN-based models for seg-
mentation can be used to enhance segmentation 
and reduce requirements for feature extraction. 

• Real-time Implementation: The technique is not 
readily extensible to massive databases, and real-
time processing of high-resolution images of un-
derwater environments is not possible. It can be 
demonstrated that optimization of the existing 
solution to make it run in real-time for segmenta-
tion with the assistance of special parallel compu-
tation environment like CUDA or GPU-based 
computation leads to more efficient and faster 
underwater image processing. 

• Temporal Data Integration: Images in AUVs typ-
ically arrive sequentially in time. Integrating 
temporal data (i.e., images at different time steps) 
during segmentation can provide additional con-
text and improve classification of time-evolving 
objects such as migrating sea creatures or migrat-
ing seafloor terrain. 

• Advanced Sensor Data Fusion: While this effort 
is largely geared to image segmentation, the in-
corporation of other types of sensor data (e.g., 
sonar, depth, temperature) would improve the 
level of segmentation, especially under low visi-
bility conditions underwater. A more vigorous 
testing of underwater features could be added by 
creating multi-sensor fusion techniques. 

• Automatic Cluster Optimization: Although op-
timization using Simulated Annealing for the 
number of clusters has been used, an exploration 
of further research in more advanced techniques 
of optimization, i.e., particle swarm optimization 
or genetic algorithms, will lead to even better 
performance, especially for more complex un-
derwater scenes with many overlapping features. 

• Extended Applications: The same methodology 
is now used in marine biology and underwater 
exploration but adaptable to other fields, such as 
environment monitoring, coastal management, 
and underwater archaeology. Substitution of the 
framework for particular domain needs and im-
provement of accuracy in those different applica-
tions would be an interesting area of further re-
search. 

 



Kobra et. al, Hybrid K-means, Random Forest, and Simulated Annealing for Optimizing Underwater Image Segmentation 
 

 

 
Scientific Journal of Engineering Research 2025, 1, 4 https://journal.futuristech.co.id/index.php/sjer 

162 

6. Conclusion 
This work has accomplished nearly an integrated so-

lution to underwater image segmentation by combining 
K-means clustering, Random Forest classification, and 
Simulated Annealing optimization. The result is that the 
novel approach maximizes the segmentation accuracy at 
95%, a clear distinction from the baseline of 65% accuracy 
if one applies merely the K-means clustering. Also, the 
decrease of segmentation error by 30% is a proof of the 
effectiveness of applying these approaches as well as an 
objective for the optimization of the segmentation. 

The Big Data dimensions—Volume, Variety, and Ve-
locity—were adequately addressed in the study to ensure 
that the framework would be able to manage large vol-
umes of underwater data sets and function under real-
time scenarios. The application of Simulated Annealing 
in solving the problem of determining the optimal num-
ber of clusters for K-means clustering provided a dynam-
ic and adaptive solution for segmenting complex under-
water images. 
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