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Abstract: The process of underwater image segmentation is also very difficult because the data collected
by the underwater sensors and cameras is of very high complexity, and much data is generated and in that
case, the data is not well seen, the color is distorted, and the features overlap. Current solutions, including
K-means clustering and Random Forest classification, are unable to partition complex underwater images
with high accuracy, or are unable to scale to large datasets, although the possibility of dynamically opti-
mizing the number of clusters has not been fully explored. To fill these gaps, this paper advises a hybrid
solution that combines K-means clustering, Random Forest classification and the Simulated Annealing
optimization as a complete end to end system to maximize the efficiency and accuracy of segmentation. K-
means clustering first divides images based on pixel intensity, Random Forest narrows its segmentation of
images with features like texture, color and shape, and Simulated Annealing determines the desired num-
ber of clusters dynamically to segment images with minimal segmentation error. The segmentation error
of the proposed method was 30 less than the baseline K-means segmentation accuracy of 65 percent and
the proposed method segmentation accuracy was 95% with an optimal cluster number of 10 and a mean
error of 7839.22. This hybrid system offers a large-scale, scalable system to underwater image processing
that is robust and has applications in marine biology, environmental research, and autonomous underwa-
ter system exploration.

Keywords: Underwater Image Segmentation; K-means Clustering; Random Forest; Simulated Annealing;

Segmentation Accuracy.
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1. Introduction

Image segmentation underwater is a very important
requirement in many industries such as environmental
research, marine science, and autonomous underwater
process. It is concerned with the processing of mass data
of high-resolution image data, which is gathered by un-
derwater sensors and cameras. These images, however,
are vulnerable to some challenges like low visibility, col-
or distortion and overlapping features, which make the
process of segmentation hard. The nature of the data in
the underwater world, its complexity and heterogeneity
in general make traditional techniques, such as threshold-
ing and edge detection, inefficient, resulting in poor de-
lineation of the significant objects, such as marine life,
ocean plants, or sea bottom topography [1].

Although better algorithms such as K-means cluster-
ing and Random Forest classification have been devel-
oped, the available solutions have failed to perform well
with large datasets. Such approaches are either not scala-
ble to large data sets or do not have the capability to dy-
namically optimize the segmentation parameters. In ad-
dition, high quality segmentation in real time is a major
issue as existing systems currently do not provide the
accuracy and computation power needed to weekly ana-
lyse underwater image data in large volumes and within
real-time [2, 3].

The ongoing battle to resolve this problem is in the
complexity of underwater images by nature, and the con-
straints of the traditional segmentation methods. These
techniques are frequently inadequate to deal with differ-
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ent underwater conditions including changes in lights,
turbidity, and the dynamic character of marine condi-
tions. Also, it is not yet developed that the requirement of
real-time processing or optimization of segmentation pa-
rameters is done in an adaptive way as per the require-
ments of real-world situations that make the existing so-
lutions ineffective in real-world and large-scale underwa-
ter exploration situations [4, 5].

To solve this ancient issue, we propose a hybrid so-
lution by relying on using the K-means clustering, the
Random Forest classification, and the Simulated Anneal-
ing optimization. The proposed methodology leverages
the benefits of each of the techniques: K-means to do the
initial pixel-wise segmentation, Random Forest to refine
the classes, and Simulated Annealing to dynamically
adapt the number of clusters and reduce the error of
segmentation. Combining the techniques, my method
provides a scalable, efficient, and accurate solution break-
ing the shortcomings of traditional techniques, making
sure that segmentation is of high quality in real-time ap-
plications [1, 2].

2. Related work

Underwater image segmentation is a critical activity
in underwater science, environmental reconnaissance,
and autonomous underwater exploration. The challenge
lies in the processing of the large volume of image data
generated by underwater sensors prone to distortion
caused by murky waters, light scattering, and color
aberration. Different approaches over the years have been
put forth and utilized in a bid to improve underwater
image segmentation and classification. Nonetheless, the
solutions available today are restricted in their capability
to address the complexity and size of the underwater
datasets, particularly real-time processing of large
datasets. This literature review summarizes the major
contributions to the field of underwater image
segmentation concisely and identifies areas covered
within our research.

2.1. Image Preprocessing and Enhancement Techniques

Initial research into underwater image segmentation
has dealt with improved visibility primarily through
image quality enhancement. Schettini and Corchs (2013)
presented a comprehensive overview of techniques for
image enhancement of underwater images, including
color correction and contrast. These corrections are
adequate to compensate for color changes and light
absorption but are less effective at segmenting and
labeling objects in the images, especially in the case of
overlapping or complex underwater structures [6]. These
improvement techniques are useful preprocessing
techniques but insufficient to deal with image
segmentation at large scale.

2.2. Clustering Techniques in Underwater

Segmentation

One of the most studied techniques utilized in
underwater image segmentation is K-means clustering.
K-means clustering to separate underwater images
according to pixel intensity so that the basic separation of
different image regions can be achieved [7]. The method,
however, is not adequate in handling overlapping objects
and changing illumination. Clusters must be predefined
in number, which is not desired in real underwater
images where segmentation objects are not known or are
in flux. To ease this, other methods have sought to
dynamically optimize clustering. Islam et al. (2020)
presented a yardstick data on semantic segmentation of
underwater photos, overcoming issues like, poor
visibility and distortion of underwater pictures. Their
study aimed at developing a dataset that can be useful in
the assessment of different segmentation methods, which
will contribute to the development of the underwater
image analysis. This dataset has proven useful in testing
and building new segmentation algorithms due to the
quality of the labelled ground truth data. This endeavor
is in line with the current efforts to enhance the accuracy
and strength of segmentation in the sea settings [8].

Image

2.3. Random Forest for Classification and Refinement

Following clustering, Random Forest classification
has also been applied to further improve segmentation
results. Pavoni et al. (2022) used Random Forest for
classifying the K-means cluster segmented areas to
improve segmentation accuracy by annotating these
areas in feature learning [9]. Their method showed the
benefit of machine learning in improving segmentation
accuracy. But similar to all the other conventional
techniques, theirs did not scale to massive data and was
computationally expensive. In addition, though
classification was enhanced, segmentation remained
poorly maximized, particularly when handling noisy or
incomplete data. Optimizing Segmentation using
Simulated Annealing.

2.4. Optimizing Segmentation with Simulated Annealing

Optimization methods like Simplied Annealing have
been utilized in efforts to optimize the results of
segmentation. Simulated Annealing to high-complexity
optimization problems by trying various solutions and
moving closer step by step towards an optimal solution
[10]. Simulated Annealing was employed in the
optimization of K-means cluster numbers in underwater
image segmentation with the optimization of the
segmentation algorithm. The process is generally time-
consuming and parameter-heavy to achieve optimal
results. The process of clustering with Simulated
Annealing and succeeded in proving that they can
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improve segmentation accuracy but also in proving that
the process was not computationally viable for big data
[9]. Big Data Challenges of Underwater Image
Segmentation With increasing volume, variety, and
velocity of underwater image data, the ability to process
and analyze large amounts of data become significant.
2.5. Big Data Challenges in Underwater
Segmentation

Lou et al. (2023) emphasized that machine learning
is increasingly becoming important in efficient processing
and analysis of large volumes of ocean data. Their work
showed that complex marine environments could also be
improved by intelligent algorithms to extract features,
classify and recognize patterns. They highlighted that the
conventional methods of analysis of data cannot cope
with large volumes and diversity of ocean information.
The former suggests that hybrid machine learning
models can be used to enhance the accuracy and
scalability of underwater image segmentation, which is
the goal of the current research [11].

The existing approaches are not able to meet the
challenge of coping with the complexity of handling large
ocean data in real time, which is a central issue to
autonomous underwater vehicles and ocean monitoring
systems. Our research solves this issue by combining K-
means clustering, Random Forest classifier, and
Simulated Annealing optimization, providing a tractable
solution to process vast amounts of underwater image
data.

Image

2.6. Research Gaps and Contributions

Research Gaps and Contributions Despite
advancement in underwater image segmentation, there
are a variety of research gaps. The majority of the existing
methods tackle either one type, ie., clustering or
classification, but not both within a single framework.

Apart from that, optimization techniques but have
yet to present in detail how dynamic real-time cluster
changes can be obtained [6, 12]. Furthermore, in growing
efforts at segmenting high-resolution underwater
datasets' images, scalability and real-time processing
remain relevant concerns, particularly for autonomous
underwater vehicles [13]. Our research surmounts the
abovementioned research limitations by combining K-
means clustering, Random Forest classification, and
Simulated Annealing optimization into an end-to-end
solution. The combination is capable of enhancing
underwater image segmentation accuracy and efficiency
and creating a scalable method for underwater image
datasets processing.

3. Methodology
Under this study, we introduce a method to enhance
underwater image segmentation using integration of K-

means clustering, Random Forest classification, and Sim-
ulated Annealing optimization. The method is framed in
accordance with the Big Data idea, i.e., addressing the
challenge of dealing with large, high-complexity data
recorded by underwater sensors and imaging devices
[13]. This section provides information about how Big
Data characteristics, sources, and approaches are used to
achieve the research outcomes.

Big Data is understood in the terms of the Volume,
Variety, and Velocity of data and how they affect the pro-
cessing and analysis of the data. They are especially ap-
propriately suited in the scenario of underwater image
segmentation, where a large amount of varied data is im-
aged at high velocities, usually in real time [14].

3.1 Characteristic Underwater Image Segmentation and
Enhancement

e Volume: We can get large datasets of the under-
water image segmentation [8].

e Heterogeneity: All of the data from the different
sources like sensors and high-resolution cameras
need to be processed individually. We incorpo-
rated K-means clustering for pixel intensity-
based segmentation and Random Forest classifi-
cation for segment classification based on fea-
tures like texture, shape, and color [15].

e Velocity: In an effort to achieve real-time pro-
cessing of underwater images, Simulated Anneal-
ing was used to dynamically optimize the seg-
mentation in a way that minimized the errors in
segmentation and yet provided a solution that
can process data at high velocities [16].

e Veracity: Data accuracy is enhanced by incorpo-
rating preprocessing activities like the removal of
noise and color normalization, which are vital if
segmentation and classification are to be success-
ful in an underwater setting [17].

e Value: Through segmentation facilitated by Sim-
ulated Annealing optimization, one possesses
useful information regarding underwater condi-
tions and offers real-time decision-making capac-
ity to autonomous underwater vehicles [18].

In our work, the primary source of Big Data is un-
derwater image sensors, i.e., high-resolution underwater
images from underwater cameras and other sensors in
the environment. Underwater images are warped de-
pending on underwater conditions such as scattering of
light and lack of visibility. Because of these warps, seg-
mentation is tough to achieve accurately, and therefore
preprocessing methods such as color correction and con-
trast enhancement are employed to improve the quality
of the images prior to segmentation [19].

Besides that, other sensor data such as depth, tem-
perature, and so on are also available in the dataset for
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the better understanding of the underwater scene. Such
sensor data put context to underwater image data and
add more dimensions of feature extraction to the segmen-
tation process [20].

3.2 Underwater Image Segmentation and Enhancement
Dataset

The significant data utilized in the present study is
the benchmark dataset of project "An Underwater Image
Enhancement Benchmark Dataset and Beyond" of Li
Chongyi. The dataset consists of underwater images with
high quality and labeled ground truth for each image,
which are precious during training and testing segmenta-
tion algorithms for underwater images. The dataset is
created to address the inherent issues related to under-
water image processing, including low visibility, color
distortion, and image degradation [21].

The data set is public use, and its main function is to
act as a reference benchmark for comparing the underwa-
ter image segmentation algorithm and the enhancement
performance [22]. You can download this data set from

this link: https://li-

chongyi.github.io/proj benchmark.html.

3.3. Mathematical Formulations and Tree Structures

In employed a combination of K-means clustering,
Random Forest classification, and Simulated Annealing
optimization for the application of underwater image
segmentation in the current study. Below are the mathe-
matical formulations and tree structures for each method
along with the formal basis of techniques used [23].

3.3.1. K-means Clustering

K-means clustering is a machine learning algorithm
that is unsupervised in nature with the aim to segment
data into k clusters based on pixel intensity values in the
case of image data shown in figure 1. The algorithm
chooses the cluster centers such that it minimizes the sum
of squared distances between every data point (pixel) and
to which it is assigned [24]. The objective function in K-
means clustering is:

]k=zn:zk:ri- o —p; 112 1)

i=1 j=1

Where n number of pixels of the image. K is number
of clusters. r;; is a binary indicator of the assignment of
pixel x; to cluster j (1 if x; is assigned to cluster j, 0 other-
wise). y; is the centroid (mean) of cluster j. x; is the fea-
ture vector of pixel i (in this case, pixel intensity) [25].

The goal is to minimize the value of J, the total in-
tra-cluster variance. This is done through iterative update
of cluster centroids, preferably by the Expectation-
Maximization (EM) algorithm.

The second is to show the original image used for
segmentation and classification. The original image is
helpful in bringing out raw data that is processed.

The K-means clustering algorithm is employed to
segment the underwater image into different regions
based on pixel intensity. The cluster centroids and seg-
mentation result are shown in the Figure 2. The image is
segmented into different regions following the applica-
tion of K-means clustering. The regions are labeled based
on pixel intensity and presented in grayscale [26].

K-means Clustering Methods

0.1

0.0 T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 1. K-means Clustering Methods.

) Optimized Image

Figure 2. Optimized Segmentation Result.
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Figure 3. Random Forest Classification.

3.3.2. Random Forest Classification

Once the image is segmented using K-means cluster-
ing, Random Forest classification is employed for the
classification of each segmented region. Random Forests
consist of multiple decision trees, and each decision tree
predicts a data point (pixel region) based on its features
[27]. The Random Forest classifier (Figure 3) learns to
make classifications by building T decision trees, each of
which h,(x) predicts a classification label for the input
vector x. The overall output y is the majority vote over all
trees:

¥ = mode(h,(x), h,(x), ..., h;(x)) 2)

Each decision tree h.(x) is learned from a randomly
sampled subset of features and training instances, so
Random Forests are immune to overfitting and very
skilled at predicting faint underwater features such as
marine fauna and seafloor morphology.

3.3.3. Simulated Annealing Optimization

Simulated Annealing (SA) is used to optimize the
number of cluster k in K-means segmentation, reducing
the segmentation error. The function to be minimized is
the Mean Squared Error (MSE) between the image and its
segmentation:

MSE (k) = 11—12(1 () = I(x;, k))? 3)

Where, n is the estimated intensity for pixel. I(x;) in
the segmented image with k clusters. [(x;, k) is the num-
ber of pixels.

The objective is to minimize the MSE by changing k,
the number of clusters. The Simulated Annealing algo-
rithm works by attempting different values for k and ac-
cepting or rejecting a value based on the following prob-
ability function:

P(k - k') = min (1, exp (#)) 4)

phragmites
tamarix
B o e I e [T ST

- echinochloa
crusgalli
|:| others

Fgure 4. Simulated Annealing Optimization.

Where, k - k'’ is the transition from the current
number of clusters k to a new number of clusters AE is
the difference in the energy (or error) of current and new
T is a temperature parameter, which decreases over time.
When the temperature T reduces, the odds of accepting a
poorer solution (k') get smaller, as it ensures convergence
to the optimal value for k. Simulated annealing optimiza-
tion is shown in Figure 4.

3.3.4. Decision Tree Structure in Random Forest

Random Forest Decision Tree is built recursively on
dividing the data based on feature values. A binary tree
is created where each node is a decision on a feature and
the edges are the outcome of the decision. At each node a
feature fi is chosen to split the data. This is usually
achieved by maximizing information gain or Gini impuri-
ty. In two-class classification, the rule at node n.
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Decision Tree-Structure in
Random Forest

Figure 5. Decision Tree Structure in Random Forest.
If fi(x) < 8, go left. Otherwise, goright. 5)

Where, f;(x) is the feature value of node n, 0 is the
cut point for feature f;, The left branch and the right
branch are two subsets of the data based on the condi-
tion.

The main components of a decision tree are:

e Root Node: The feature leading to the best split
of the data under a decision rule (e.g., Pixel In-
tensity (I)).

e Branches: The choice directions based on feature
values, guiding the data along the tree.

e Leaf Nodes: The final classification labels, which
tell the class of the segmented region.

Each tree in the Random Forest (Figure 5) is con-
structed independently, and the final classification will
be a majority vote across all trees.

3.3.5 Simplified Decision Tree Structure
Suppose we are segmenting regions of an underwa-
ter image into two classes: Marine, Species or Ocean

Floor. The decision tree can be structured shown in Fig-
ure 6.
a) Root Node: The tree starts with Pixel Intensity (I),
and the root split divides the data into two sets:
Pixel Intensity (I) < 150: The pixel intensity is less
than 150, which leads to the left branch.
Pixel Intensity (I) = 150: The pixel intensity is 150
or above, leading to the right branch.
b) Left Subtree (Pixel Intensity < 150):
If the Texture (T) is less than 0.5, the region will
be classified as Marine Species.
If the Texture (T) is > 0.5, the region is labeled as
Ocean Floor.
c) Right Subtree (Pixel Intensity > 150):
If the Texture (T) is < 0.7, the region is labeled as
Marine Species.
If the Texture (T) is = 0.7, the region is labeled as
Ocean Floor.

3.3.6 Comparison of Clustered Images

K-means cluster, Random Forest classification, and
optimized K-means cluster output are compared (Figure
7) in color code. They all use various color codes to show
segmented regions to highlight their differences. The pic-
ture optimized with K-means clustering with k=10, whose
number of clusters has been optimized.

4. Results

The overall objective of this work was to improve
underwater image segmentation through the integration
of K-means clustering, Random Forest classification, and
Simulated Annealing optimization. The results reported
here confirm the applicability of the integrated approach
towards improving the accuracy of segmentation and
overcoming the difficulties encountered in underwater
images.

Root Node

Pixel
Intensity(1)<150

A 9 Texture(T)<0.5

Marine Species

Ocean Floor

Figure 6. Decision Tree.

Texture(T)20.5

Pixel
Intensity(1)2150

Texture(T)20.7

Marine Species Ocean Floor
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Comparison of Clustered Images
T e _J

Figure 7. Comparison of Clustered Images.

K-means Clustering (with centers)
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Figure 8. K-means Clustering (with centers).

K-means Clustering

Figure 9. K-means Clustering Segmentation.

4.1. Segmentation Accuracy Improvement
4.1.1. Baseline K-means Clustering

Segmentation was first performed using K-means
clustering, which split the underwater image pixels based
on pixel intensity. The method is fast and faster, but it
had a problem in segmenting complex underwater imag-
es accurately due to the natural pixel intensity similarities
between different underwater components (e.g., sea floor,
sea creatures, and water). Figure 8 shows the K-means
clustering with centers.

K-means Clustered Image (Color Coded)
oy o, 0 W

- ’
. ?-}‘ <

L -
‘ g 0
- #

L A 9
Y .‘:?‘

Figure 10. K-means Clustered Image (Color Coded).

Random Forest Classification

Figure 11. Random Forest Classification.
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Random Forest Classified Image (Color Coded)
o o, 0 0 W

,’. :~'. . ?‘ .
TRRATL

Figure 12. Random Forest Classified Image (Color Coded).

~ Optimized Image

e !"_.' R AR s, 1 34
Figure 13. Optimized Segmentation Result.

4.1.2. K-means Segmentation Accuracy

The baseline accuracy using K-means clustering was
65%, so that the large proportion of regions in the un-
derwater image were segmenting or identified wrongly.
K-means clustering segmentation and colored clustered
image are shown in Figure 9 and 10.

4.1.3. Segmentation with Random Forest
After segmentation by K-means, a Random Forest
classifier was utilized to refine it. Random Forest calls

Optimized K-means (k = 10)

Figure 14. Optimized K-means (k = 10).

upon an ensemble of decision trees to classify the seg-
mented areas based on their attributes (e.g., pixel intensi-
ty, texture, and color). The process enhanced discrimina-
tion between complex features such as marine life, vege-
tation, and ground. Random forest classification and clas-
sified colored image are shown in Figure 11 and 12.

Random Forest classifier contributed towards gain-
ing better segmentation accuracy through precise tagging
of the regions based on feature learning from data. The
method was still hindered by its ability to process large
data and needed an optimized segmentation process.

This Figure 12 illustrates the color-coded Random
Forest classified image where every segment is classified
based on learned features.

4.2. Optimization using Simulated Annealing

Simulated Annealing Optimization is done to fur-
ther improve segmentation procedure. K-means cluster-
ing's cluster number (k) was optimized employing Simu-
lated Annealing. Simulated Annealing algorithm altered
the cluster number randomly based on the error in initial
segmentation outcomes in a manner that would mini-
mize Mean Squared Error (MSE) between original and
segmented images.
The Figure 13 was to find the optimal number of clusters
k which would minimize segmentation error and im-
prove segmentation accuracy. Segmentation Error Reduc-
tion: After employing Simulated Annealing optimization,
the optimal number of clusters was achieved, and it led
to 30% segmentation error reduction. Optimization sig-
nificantly improved the accuracy of the segmented region
such that the segmentation effectively simulated
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Segmentation Error vs. Number of Clusters

8800
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0
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Figure 15. Segmentation Error vs. Number of Clusters.

real underwater features. Optimized K-means (k=10) im-
age is shown in Figure 14.

4.3. Final Segmentation Accuracy

Segmentation Accuracy Maximized through the ad-
dition of K-means clustering, Random Forest classifica-
tion, and Simulated Annealing optimization, the final
segmentation accuracy was 95%. That's an improvement
from the baseline 65% segmentation accuracy using just
K-means clustering.

The 95% segmentation accuracy indicates that the
method successfully segmented underwater image re-
gions well, from marine life, vegetation, and terrain, with
very little misclassification. Segmentation Error Reduc-
tion: After Simulated Annealing optimization, the clus-
ters number was also optimized, and the segmentation
error was decreased by 30%. Optimization helped in sig-
nificantly improving the accuracy of the segmented re-
gions, to the extent that the segmentation was more pre-
cise in describing the actual underwater features.

4.4. Segmentation Error vs. Number of Clusters

Finally, the Segmentation Error (MSE) is plotted ver-
sus the number of clusters k to represent the effect of dif-
ferent numbers of clusters on segmentation accuracy
shown in Figure 15. We found the segmentation error
7839.22. This indicates that increasing the number of clus-
ters decreases segmentation error up to the optimization
of the segmentation.

5. Future Work

The paper suggests a strong underwater image seg-
mentation approach based on the integration of K-means
clustering, Random Forest classification, and Simulated
Annealing optimization. Future work opportunities are
also provided for further improving the approach and
further extending it:

Interfacing with Deep Learning: Since the meth-
od suggested hinges on the application of tradi-
tional machine learning techniques, interfacing
with deep learning architecture such as Convolu-
tional Neural Networks (CNNSs) can be used to
enhance the quality of segmentation, particularly
in realistic underwater environments. For exten-
sion in the future, CNN-based models for seg-
mentation can be used to enhance segmentation
and reduce requirements for feature extraction.
Real-time Implementation: The technique is not
readily extensible to massive databases, and real-
time processing of high-resolution images of un-
derwater environments is not possible. It can be
demonstrated that optimization of the existing
solution to make it run in real-time for segmenta-
tion with the assistance of special parallel compu-
tation environment like CUDA or GPU-based
computation leads to more efficient and faster
underwater image processing.

Temporal Data Integration: Images in AUVs typ-
ically arrive sequentially in time. Integrating
temporal data (i.e., images at different time steps)
during segmentation can provide additional con-
text and improve classification of time-evolving
objects such as migrating sea creatures or migrat-
ing seafloor terrain.

Advanced Sensor Data Fusion: While this effort
is largely geared to image segmentation, the in-
corporation of other types of sensor data (e.g.,
sonar, depth, temperature) would improve the
level of segmentation, especially under low visi-
bility conditions underwater. A more vigorous
testing of underwater features could be added by
creating multi-sensor fusion techniques.
Automatic Cluster Optimization: Although op-
timization using Simulated Annealing for the
number of clusters has been used, an exploration
of further research in more advanced techniques
of optimization, i.e., particle swarm optimization
or genetic algorithms, will lead to even better
performance, especially for more complex un-
derwater scenes with many overlapping features.
Extended Applications: The same methodology
is now used in marine biology and underwater
exploration but adaptable to other fields, such as
environment monitoring, coastal management,
and underwater archaeology. Substitution of the
framework for particular domain needs and im-
provement of accuracy in those different applica-
tions would be an interesting area of further re-
search.
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6. Conclusion

This work has accomplished nearly an integrated so-
lution to underwater image segmentation by combining
K-means clustering, Random Forest classification, and
Simulated Annealing optimization. The result is that the
novel approach maximizes the segmentation accuracy at
95%, a clear distinction from the baseline of 65% accuracy
if one applies merely the K-means clustering. Also, the
decrease of segmentation error by 30% is a proof of the
effectiveness of applying these approaches as well as an

The Big Data dimensions— Volume, Variety, and Ve-
locity —were adequately addressed in the study to ensure
that the framework would be able to manage large vol-
umes of underwater data sets and function under real-
time scenarios. The application of Simulated Annealing
in solving the problem of determining the optimal num-
ber of clusters for K-means clustering provided a dynam-
ic and adaptive solution for segmenting complex under-
water images.

objective for the optimization of the segmentation.
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