

Date of publication February 3, 2025, date of current version February 3, 2025. Digital Object Identifier 10.64539/sjer.v1i1.2025.8

e-ISSN:3109-172

Review

Trends and Impact of the Viola-Jones Algorithm: A Bibliometric Analysis of Face Detection Research (2001-2024)

Setiawan Ardi Wijaya^{1,*}, Tri Stiyo Famuji², Muhammad Amirul Mu'min³, Yana Safitri⁴, Novi Tristanti⁵, Abdennasser Dahmani⁶, Zied Driss⁷, Abdel-Nasser Sharkawy^{8,9}, Raheem Al-Sabur¹⁰

- Department of Information System, Universitas Muhammadiyah Riau, Pekanbaru, 28294, Indonesia; setiawanardiwijaya@umri.ac.id
- ² Department of Information Technology, Universitas Harapan Bangsa Purwokerto, Banyumas, 53182, Indonesia; tristiyofamuji@uhb.ac.id
- ³ Department of Computer Science, Universitas Muhammadiyah Bima, Bima, 84111, Indonesia; amirulmukmin@umbima.ac.id
- ⁴ Department of Computer Science, Universitas Qamarul Huda Bagu, Lombok, 83371, Indonesia; yanas.af04@gmail.com
- ⁵ Department of Informatics, Universitas Sragen, Sragen, 57212, Indonesia; novitristanti@gmail.com
- 6 Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Urban Pole, 26000 Medea, Algeria; dahmaniabdennasser@gmail.com
- ⁷ Laboratory of Electro-Mechanic Systems, National School of Engineers of Sfax, University of Sfax, Tunisia; zied.driss@enis.tn
- 8 Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt; abdelnassersharkawy@eng.svu.edu.eg
- 9 Mechanical Engineering Department, College of Engineering, Fahad Bin Sultan University, Tabuk 47721, Saudi Arabia
- ¹⁰ Mechanical Department, Engineering College, University of Basrah, Basrah 61004, Iraq; raheem.musawel@uobasrah.edu.iq
- * Correspondence

This research was supported by Department of Information System, Universitas Muhammadiyah Riau. We also want to thank Lembaga Penelitian & Pengabdian kepada Masyarakat (LPPM) Universitas Muhammadiyah Riau. Our gratitude is also to Universitas Muhammadiyah Riau for other support.

Abstract: The Viola-Jones algorithm remains a cornerstone in computer vision, particularly for object and face detection. This bibliometric study provides a comprehensive analysis of the algorithm's academic impact and research trends, encompassing publication patterns, citation metrics, influential authors, and co-occurrence of keywords. The findings indicate a significant rise in research outputs and citations between 2016 and 2020, reflecting the algorithm's sustained relevance and application in various domains. Network visualization maps further reveal the algorithm's integration with diverse fields, including machine learning, image processing, and neural networks, emphasizing its versatility and adaptability to emerging technological challenges. Key research contributions include advancements in hybrid approaches, combining the Viola-Jones framework with techniques such as convolutional neural networks and HOG-SVM for improved detection accuracy. However, limitations such as computational inefficiency and sensitivity to environmental factors persist, presenting opportunities for innovation. This study concludes by highlighting future research directions, such as integrating deep learning and edge computing to enhance algorithmic performance in real-time and complex scenarios. This study provides a valuable reference for researchers and practitioners aiming to extend the Viola-Jones algorithm's capabilities and applications by consolidating existing knowledge and identifying research gaps.

Keywords: Viola-Jones algorithm; face detection; computer vision; bibliometric analysis; VOSviewer

Copyright: © 2024 by the authors. This is an open-access article under the CC-BY-SA license.

1. Introduction

Over the past decades, the use of machine learning tools has significantly increased across various industrial[1-3], environmental[4], medical[5], and other fields. The Viola-Jones Algorithm, as a machine learning tool, is a robust and widely used framework for real-time object detection, mainly known for its application in face detection[6, 7]. Introduced by Paul Viola and Michael Jones in 2001, the algorithm combines four key techniques to achieve high-speed and accurate detection: Haar-like features for image representation, an integral image for rapid computation of features, AdaBoost for selecting the most critical features, and a cascade classifier to efficiently reject non-face regions early in the process[8, 9]. This hierarchical structure enables the algorithm to detect faces quickly while minimizing computational overhead, making it a cornerstone of early computer vision systems and a foundational approach in image analysis.

The Viola-Jones Algorithm revolutionized face detection by providing a practical, efficient, and real-time solution for identifying faces in images and video streams. It uses Haar-like features to represent the visual characteristics of a face, allowing the algorithm to differentiate facial regions from non-facial regions. These features are rapidly computed using an integral image technique, enabling swift evaluation of multiple potential face regions [10, 11]. The AdaBoost algorithm selects the most discriminative features, enhancing detection accuracy and reducing unnecessary computations [12, 13]. Finally, the cascade classifier organizes the detection process into multiple stages, rejecting non-face regions early and focusing computational resources on promising areas. This combination of speed and accuracy made the Viola-Jones Algorithm a seminal contribution to computer vision, laying the groundwork for advancements in face detection technologies [14, 15].

The Viola-Jones Algorithm has significantly influenced face detection research from its inception in 2001 to 2024, as evidenced by a bibliometric analysis of the field. This foundational algorithm sparked a surge in interest in real-time object detection, shaping early computer vision methodologies[16, 17]. Over the years, its impact has persisted, with researchers building upon its principles to develop more advanced models leveraging deep learning, convolutional neural networks (CNNs), and improved feature extraction techniques[18]. Despite the shift toward data-driven and neural network-based methods, the algorithm's efficiency, simplicity, and conceptual elegance remain a cornerstone for educational purposes and applications in constrained environments. The bibliometric trends highlight sustained citation activity, underscoring the algorithm's foundational role and its enduring influence on the evolution of face detection technologies from traditional methods to modern AI-powered solutions [19].

The article aims to analyze the trends, evolution, and enduring impact of the Viola-Jones Algorithm on face detection research from 2001 to 2024 through a bibliometric study.

Bibliometric analysis is crucial in studying the impact of the Vi-ola-Jones Algorithm on face detection research, as it provides quantitative insights into the algorithm's influence over time[20, 21]. By examining citation patterns, publication trends, and collaborations, bibliometric analysis identifies key contributions, influential works, and emerging research directions stemming from the algorithm [21]. It highlights how the Viola-Jones framework laid the groundwork for subsequent innovations in computer vision and face detection while assessing its relevance in the modern era of deep learning [22-25]. This approach also helps contextualize the algorithm's historical significance, enabling researchers to trace its evolution and ongoing influence on technological advancements in face detection systems [26-28].

In summary, the Viola-Jones Algorithm has been a groundbreaking development in face detection, serving as a foundation for subsequent innovations and advancements in computer vision. Its efficiency, simplicity, and adaptability have influenced academia and industry, shaping research trajectories and practical applications over two decades.

The Viola-Jones Algorithm, introduced by Viola and Jones in 2001, marked a pivotal moment in computer vision, particularly in face detection research. The algorithm's innovative use of Haar-like features, integral images, AdaBoost for feature selection, and a cascade structure for efficient classification have been widely cited in academic and applied research[29]. Early studies, such as Lienhart and Maydt [30], extended the algorithm by enhancing the Haar-like features to improve accuracy. Subsequent works explored its limitations in handling lighting, pose, and occlusion variations, which spurred efforts to integrate it with other techniques, such as histogram equalization and feature normalization [31]. Ruiz-Beltrán applies the Viola-Jones algorithm to create a real-time eye detection system. They show that the accuracy in terms of eye detection is 100% [32]. This proves that the Viola-Jones algorithm is still quite feasible to use. While its efficiency and real-time capabilities have made it a standard for many years, the rise of deep learning-based approaches has led to a gradual shift, although Viola-Jones remains a foundational algorithm for understanding object detection.

Recent bibliometric studies emphasize the algorithm's lasting impact on face detection research and its integration into advanced frameworks. For instance, Chatzilari et al. [33]conducted a comprehensive review of face detection methods, highlighting how Viola-Jones inspired the adoption of structured, feature-based approaches. Apart from that, several studies discuss bibliometrics,

including Yutian Feng [34] conducting research entitled application of Artificial Intelligence-based computer vision methods in liver diseases: a bibliometric analysis, Intelligent Medicine. Yang Zhang [35] also conducted related bibliometrics titled Deep Learning Meets Bibliometrics: A survey of citation function classification. Mehmet Rizelioʻglu [36] also carried out related bibliometrics with the title an extensive bibliometric analysis of pavement deterioration detection using sensors and machine learning: Trends, innovations, and future directions.

While the literature review highlights the foundational contributions of the Viola-Jones Algorithm and its sustained influence on face detection research, it lacks a systematic and quantitative assessment of how the algorithm's impact has evolved within the broader scientific community. Existing studies often focus on technical enhancements or comparisons with modern methods but do not provide a holistic bibliometric analysis of publication trends, collaboration networks, or citation patterns associated with the algorithm. Apart from that, a lot of research has also been carried out on bibliometrics, proving that research on this topic is quite interesting to discuss. This research addresses this gap by employing bibliometric tools to evaluate the algorithm's influence from 2001 to 2024 quantitatively. By bridging qualitative insights from the literature review with data-driven analysis, this study offers a deeper understanding of the algorithm's enduring relevance and role in shaping advancements in face detection technology. Moreover, this study can be utilized to investigate the bibliometric analysis of the Viola-Jones Algorithm and Face Detection research, examining publication trends and impact. It explores key application areas and identifies the ten most prominent source titles contributing to total publications and citations. Additionally, the study highlights the most highly cited documents, relevant keywords, and the leading countries in Viola-Jones Algorithm and Face Detection research.

2. Methodology

The methodology used in this research is presented in Figure 1: This research methodology uses comprehensive bibliometric analysis to examine the impact and evolution of the Viola-Jones Algorithm in face detection research from 2001 to 2024. This approach involves collecting data related to the algorithm from the leading Scopus database. Data is analyzed using bibliometric tools such as VOSviewer and BiblioMagika to identify trends, co-citation patterns, and the most influential works and authors in the field. By combining quantitative metrics and qualitative assessments, this research provides a holistic view of the role of algorithms in shaping the facial detection research landscape over two decades. The methodology used in this research is presented in Figure 1.

The flowchart outlines the data collection and retrieval process for the biblio-metric analysis of the ViolaJones Algorithm's impact on face detection research. The process begins with the authors determining the publication topic and setting the retrieval date. Using the query TITLE-ABS-KEY ("Viola-Jones Algorithm" AND "Face Detection"), data was extracted on September 16, 2024, resulting in 255 documents since 1992. In CSV format, the retrieved data was then subjected to two parallel analysis pathways. In the first pathway, the data in the "Scopus_exported_refine_values.csv" format was analyzed using Microsoft Excel to explore descriptive and publication trends. The "Sco-pus.csv" file was processed in the second pathway using VOSviewer to perform bibliometric mapping. This structured approach ensures a comprehensive understanding of the publication trends and bibliometric patterns related to the algorithm.

3. Results and Discussion

3.1. Trends in Publications

The graph illustrates the annual distribution of publications and total citations related to the Viola-Jones Algorithm in face detection research from 2004 to 2024. This graph was obtained from the results of the BiblioMagika tool. Some figures and tables in this study are obtained using BibilioMagika tool which was developed by Aidi Aimi [37]. The blue bars represent the total number of publications annually, while the orange line indicates the corresponding total citations. The trend reveals a steady increase in publications and citations over the years, with a notable peak in 2018, marking the highest publication count (33) and citation count (328). After 2018, both metrics show a gradual decline, reflecting the algorithm's transition from being a central research focus to a foundational method within the field. This visualization underscores the algorithm's significant influence during its peak years and highlights its enduring relevance in recent years, albeit at a diminished pace. The graph of total publications by year is shown in Figure 2.

Figure 2 shows the chart revealing significant insights into the research trends and academic impact of the Viola-Jones Algorithm from 2004 to 2024. Initially, there was limited research activity, with only a few publications and citations from 2004 to 2010, indicating a gradual algorithm adoption. A sharp increase in publications and citations is observed from 2011 to 2018, reflecting the growing recognition of the algorithm as a fundamental method in face detection research. The peak in 2018, with 33 publications and 328 citations, signifies the height of its influence and relevance in the field. However, a noticeable decline in both metrics is evident after 2018, suggesting a shift in research focus toward more advanced methods, such as deep learning and neural networks. Despite this decline, publications and citations in recent years highlight the algorithm's continued utility, particularly in specific applications and resource-constrained environments, emphasizing its foundational role in computer vision.

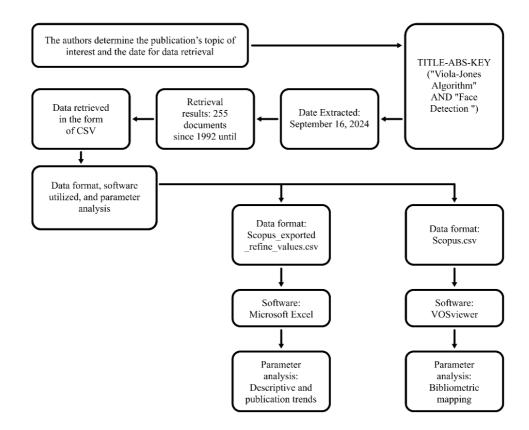


Figure 1. The Flowchart of Data Collection and Data Retrieval.

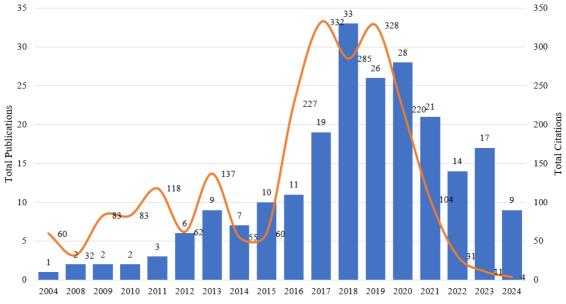


Figure 2. Total Publications and Citations by Year.

3.2. Publication by Countries

The network visualization map generated through VOSviewer illustrates the citation relationships among countries involved in research on the Viola-Jones Algorithm. Each node represents a country, with the node's size corresponding to the number of citations attributed to that country. The lines connecting the nodes indicate collaborative or citation relationships, with thicker lines signifying stronger connections. Countries such as India, the

Russian Federation, and the Philippines appear as central hubs, reflecting their significant contributions and influence within this research domain. This map provides an overview of global collaboration and the geographical distribution of impactful research on the Viola-Jones Algorithm, highlighting the interconnectedness of countries in advancing face detection studies. Figure 3 shows the network visualization map of citations based on countries created using VOSviewer, highlighting the research's global

collaboration and influence on the Viola-Jones Algorithm. The map shows that India is a dominant hub with strong citation links to other countries, such as the Russian Federation, the Philippines, and Spain, indicating its central role in advancing face detection research. Similarly, clusters of countries such as Iraq, Saudi Arabia, and Mexico reflect regional collaborations. The thickness of the connecting lines represents the strength of citation relationships, demonstrating the interconnected nature of this field. Additionally, smaller nodes and isolated connections, such as Ecuador, suggest emerging contributions or limited collaboration from specific regions. Overall, the map provides valuable insights into the geographical dynamics of academic influence, highlighting major contributors and potential areas for further cooperation in face detection research.

3.3. Publications by Subject Area

Studying publications by subject area helps identify research trends, knowledge gaps, and the interdisciplinary impact of a field. It also provides insights into the most active domains, guiding future research and funding priorities.

Table 1 provides a detailed distribution of publications related to the Viola-Jones Algorithm across various subject areas, emphasizing its multi-disciplinary impact. Computer Science leads with 77.27% of total publications, underscoring its central role in developing and applying face detection technologies. Engineering follows with 52.73%, reflecting the algorithm's integration into hardware and system design. Mathematics (22.73%) and Physics and Astronomy (21.36%) demonstrate the theoretical and computational foundations supporting the algorithm's functionality.

Decision Sciences and Materials Science contribute 12.27% and 9.55%, respectively, indicating their adoption in optimization and material-related applications. Other

fields, such as Energy, Medicine, and Social Sciences, have lower percentages, suggesting niche applications in specific domains. The minimal presence in areas like Biochemistry, Arts and Humanities, and Chemistry highlights limited exploration in these contexts.

This distribution showcases the algorithm's primary relevance in technical and computational disciplines while revealing opportunities for broader interdisciplinary research.

3.4. Publications by Sources Titles and Highly Cited Documents

Analyzing publications by source titles and highly cited documents helps identify the field's most influential journals, conferences, and research papers. This insight guides researchers in selecting reputable sources for publishing and understanding key contributions that shape the domain.

Table 1. Publications by Subject Area.

Subject Area	TP	Percentage					
Computer Science	170	77.27%					
Engineering	116	52.73%					
Mathematics	50	22.73%					
Physics and Astronomy	47	21.36%					
Decision Sciences	27	12.27%					
Materials Science	21	9.55%					
Energy	10	4.55%					
Medicine	10	4.55%					
Social Sciences	8	3.64%					
Business, Management	5	2.27%					
and Accounting							
Environmental Science	4	1.82%					
Chemical Engineering	3	1.36%					
Biochemistry, Genetics and Molecular Biology	5	1.96%					

Figure 3. Network visualization maps of the citations based on countries.

Table 2. Most active source titles.

Source Title	TP	NCA	NCP	TC	C/P	C/CP	h	g	m
Journal of Physics: Conference Series	11	44	9	66	6.00	7.33	5	8	0.625
Proceedings of SPIE - The International Society for Optical Engineering	11	39	9	62	5.64	6.89	5	7	0.417
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)	9	29	7	41	4.56	5.86	3	6	0.167

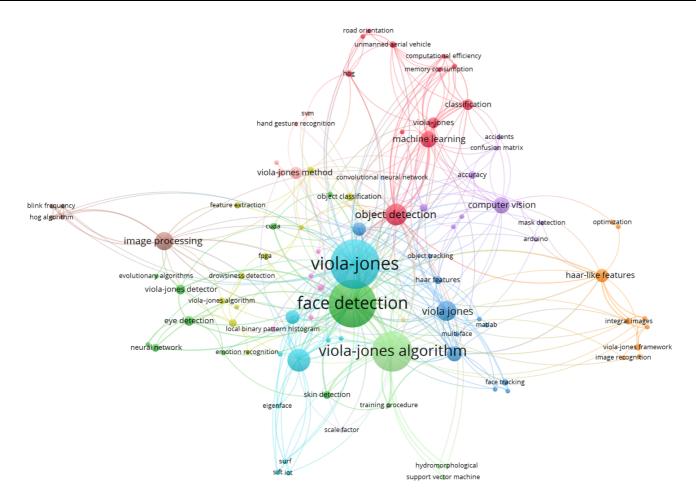

Notes: TP=total number of publications; NCP=number of cited publications; TC=total citations; C/P=average citations per publication; C/CP=average citations per cited publication; h=h-index; and g=g-index.

Table 3. The top 5 highly cited articles.

No.	Author(s)	Title	Source Title		C/Y
1	Ramana L.; Choi	Fully automated vision-based loos-	Structural Health Monitoring	119	17.00
	W.; Cha YJ. [38]	ened bolt detection using the Vi-			
		ola–Jones algorithm			
2	Xu Y.; Yu G.;	A hybrid vehicle detection method	Sensors (Switzerland)	111	11.10
	Wang Y.; Wu X.;	based on viola-jones and HOG+			
	Ma Y. [39]	SVM from UAV images			
3	Castrillón M.; Dé-	A comparison of face and facial	Machine Vision and Applications	96	6.40
	niz O.; Hernández	feature detectors based on the Vi-			
	D.; Lorenzo J. [40]	ola-Jones general object detection			
		framework			
4	Xu Y.; Yu G.; Wu	An Enhanced Viola-Jones Vehicle	IEEE Transactions on Intelligent	88	9.78
	X.; Wang Y.; Ma Y.	Detection Method from Un-	Transportation Systems		
	[41]	manned Aerial Vehicles Imagery			
5	Vikram K.;	Facial parts detection using Viola	2017 4th International Conference	86	9.56
	Padmavathi S. [42]	Jones algorithm	on Advanced Computing and Com-		
			munication Systems, ICACCS 2017		

Table 2 analyzes key publication metrics for five prominent sources contributing to research on the Viola-Jones Algorithm. This table was obtained from the results of the BiblioMagika tool. The Journal of Physics: Conference Series and Proceedings of SPIE lead with 11 total publications (TP), highlighting their significant role in disseminating related research. Both sources also show a relatively high number of citations per paper (C/P) at 6.00 and 5.64, respectively, indicating strong academic impact. Lecture Notes in Computer Science follow 9 publications, though their average citations per paper (4.56) and citations per cited paper (C/CP at 5.86) are slightly lower. Meanwhile, Advances in Intelligent Systems and Computing contributes 7 publications with moderate citation metrics (C/P at 4.57). Notably, the AIP Conference Proceedings has 4 publications but no citations, suggesting limited impact or engagement with its contributions. The h-index and g-index values across the sources further highlight the relative influence of the first two journals, indicating their importance in shaping discussions around the algorithm. Overall, this analysis underscores the centrality of conference proceedings and computer science-focused publications in advancing research on face detection.

Table 3 highlights the most influential research articles utilizing the Viola-Jones Algorithm, measured by total citations (TC) and per year (C/Y). The study by Ramana et al. [38] on automated vision-based loosened bolt detection, published in Structural Health Monitoring, leads with 119 citations and an impressive 17.00 citations per year, showcasing its significant impact and relevance in structural health applications. Xu et al. [39] follow closely with a hybrid vehicle detection method combining Viola-Jones with HOG and SVM, published in Sensors, earning 111 citations and 11.10 C/Y, reflecting the algorithm's utility in UAVbased applications. Castrillón et al. [40] provide foundational work comparing face and facial feature detectors, with 96 citations and 6.40 C/Y, demonstrating its relevance over time. Xu et al. [41] and Vikram and Padmavathi [42] also show notable contributions in vehicle and facial parts detection, with 88 and 86 total citations and 9.78 and 9.56 C/Y, respectively. This analysis highlights the algorithm's versatility across domains, including structural health monitoring, UAV-based vehicle detection, and facial feature detection, while underscoring these studies' enduring academic interest and influence.

Figure 4. Network visualization map of the co-occurrence by keywords.

3.5 Most Used Keyword

Figure 4 shows a visualization map of the co-occurrence network based on keywords, created using VOSviewer revealing interconnected themes and focus areas on research involving the Viola-Jones algorithm. Central keywords such as "Viola-Jones," "face detection," and "Viola-Jones algorithm" appear as dominant nodes, reflecting their foundational role in the research domain. Surrounding these core nodes are clusters representing specialized topics, such as "object detection," "image processing," and "haar-like features," which signify specific applications and technical components. Keywords like "machine learning," "computer vision," and "neural network" illustrate the algorithm's integration with advanced technologies, while terms like "eye detection" and "emotion recognition" indicate their diverse use cases. The dense interconnections between nodes suggest strong cooccurrence relationships, highlighting the collaborative nature of these research themes. Overall, this map showcases the breadth and depth of research applications, emphasizing the centrality of the Viola-Jones algorithm within the broader field of computer vision and image processing.

4. Conclusion

This study highlights the significant role of the Viola-Jones algorithm in advancing computer vision and image processing, particularly in face and object detection. The bibliometric analysis reveals consistent research output and citation growth over the years, indicating its continued relevance in academia and industry. The algorithm's integration with related domains, such as machine learning, object tracking, and neural networks, underscores its versatility and adaptability to evolving technological needs. This study identifies key research areas, trends, and collaborations through network visualization maps, providing a comprehensive overview of the algorithm's impact and influence. Despite its foundational contribution to the field, limitations like sensitivity to environmental factors and computational constraints have emerged, indicating areas that require further exploration.

The thematic and citation analysis demonstrates the algorithm's extensive applications, from autonomous systems to healthcare, emphasizing its broad societal and industrial significance. While research on Viola-Jones has matured, opportunities for innovation remain, particularly in enhancing its performance in challenging scenarios such as low-light conditions, real-time processing, and multi-object detection. Researchers can address these limitations by integrating emerging technologies like deep learning and edge computing, ensuring the algorithm's continued relevance. This study consolidates knowledge on the Viola-Jones algorithm and provides a roadmap for

future research directions, fostering advancements that build upon its strong foundational framework.

Future research on the Viola-Jones algorithm should address its limitations, such as its sensitivity to variations in lighting, occlusions, and non-frontal views. Advanced deep learning techniques, such as convolutional neural networks (CNNs) or transformers, could enhance its robustness and performance in real-world applications. Additionally, exploring the algorithm's potential in emerging

domains like augmented reality, autonomous vehicles, and intelligent healthcare systems could broaden its scope and impact. Researchers could also investigate energy-efficient implementations for resource-constrained devices, enabling widespread adoption of Internet of Things (IoT) systems. Building upon the foundational work and integrating modern advancements will ensure that the Viola-Jones algorithm remains relevant and effective in addressing the challenges of an evolving technological landscape.

5. Conflicts of Interest

The authors declare no conflicts of interest.

6. References

- [1] A. S. Bahedh, A. Mishra, R. Al-Sabur, and A. K. Jassim, "Machine learning algorithms for prediction of penetration depth and geometrical analysis of weld in friction stir spot welding process," *Metallurgical Research & Technology*, vol. 119, no. 3, p. 305, 2022.
- [2] K. Ikram, K. Djilali, D. Abdennasser, R. Al-Sabur, B. Ahmed, and A.-N. Sharkawy, "Comparative analysis of fouling resistance prediction in shell and tube heat exchangers using advanced machine learning techniques," *Research on Engineering Structures and Materials*, 2023, doi: 10.17515/resm2023.858en0816.
- [3] S. E. Belalia, M. Serier, and R. Al-Sabur, "Parametric Analysis for Torque Prediction in Friction Stir Welding Using Machine Learning and Shapley Additive Explanations," *Journal of Computational Applied Mechanics*, vol. 55, no. 1, 2024, doi: 10.22059/JCAMECH.2024.370055.924.
- [4] A. Dahmani et al., "Parametric Analysis of Climate Factors for Monthly Weather Prediction in Ghardaïa District Using Machine Learning-Based Approach: ANN-MLPs Abdennasser Dahmani (Parametric Analysis of Climate Factors for Monthly Weather Prediction in Ghardaïa District Using Machine Learning-Based Approach: ANN-MLPs)," International Journal of Robotics and Control Systems, vol. 5, no. 1, pp. 179–196, 2025, doi: 10.31763/ijrcs.v5i1.1651.
- [5] M. Shehab *et al.*, "Machine learning in medical applications: A review of state-of-the-art methods," 2022. doi: 10.1016/j.compbiomed.2022.105458.
- [6] A. W. Y. Wai, S. M. Tahir, and Y. C. Chang, "GPU acceleration of real time Viola-Jones face detection," in *Proceedings 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE* 2015, 2016. doi: 10.1109/ICCSCE.2015.7482181.
- [7] Q. Li, U. Niaz, and B. Merialdo, "An improved algorithm on Viola-Jones object detector," in *Proceedings International Workshop on Content-Based Multimedia Indexing*, 2012. doi: 10.1109/CBMI.2012.6269796.
- [8] K. PNithish Sriman, P. Raj Kumar, A. Naveen, and R. Saravana Kumar, "Comparison of Paul Viola Michael Jones algorithm and HOG algorithm for Face Detection," IOP Conf Ser Mater Sci Eng, vol. 1084, no. 1, 2021, doi: 10.1088/1757-899x/1084/1/012014.
- [9] K. H. Rani and M. Chakkaravarthy, "Improving Accuracy in Facial Detection Using Viola-Jones Algorithm AdaBoost Training Method," in *Smart Innovation, Systems and Technologies*, 2022. doi: 10.1007/978-981-19-0011-2_12.
- [10] P. Viola and M. Jones, "Rapid Object Detection Using a Boosted Cascade of Simple Features," in *Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2001, pp. 1–1. doi: 10.1109/CVPR.2001.990517.
- [11] P. Viola and M. Jones, "Robust Real-Time Face Detection," *Int J Comput Vis*, vol. 57, pp. 137–154, 2004, doi: https://doi.org/10.1023/B:VISI.0000013087.49260.fb.
- [12] M. V. Alyushin, V. M. Alyushin, and L. V. Kolobashkina, "Optimization of the data representation integrated form in the viola-jones algorithm for a person's face search," *Procedia Comput Sci*, vol. 123, pp. 18–23, 2018, doi: 10.1016/j.procs.2018.01.004.
- [13] P. Irgens, C. Bader, T. Lé, D. Saxena, and C. Ababei, "An efficient and cost effective FPGA based implementation of the Viola-Jones face detection algorithm," *HardwareX*, vol. 1, pp. 68–75, 2017, doi: 10.1016/j.ohx.2017.03.002.
- [14] N. T. Deshpande and S. Ravishankar, "Face Detection and Recognition using Viola-Jones algorithm and fusion of LDA and ANN," *IOSR J Comput Eng*, vol. 18, no. 6, pp. 1–6, 2016, [Online]. Available: https://pdfs.semanticscholar.org/c5cf/c1f5a430ad9c103b381d016adb4cba20ce4e.pdf

- [15] Sunardi, A. Yudhana, and S. A. Wijaya, "Application of Median and Mean Filtering Methods for Optimizing Face Detection in Digital Photo," *Revue d'Intelligence Artificielle*, vol. 37, no. 2, pp. 291–297, Apr. 2023, doi: 10.18280/ria.370206.
- [16] V. V. Arlazarov, J. S. Voysyat, D. P. Matalov, D. P. Nikolaev, and S. A. Usilin, "Evolution of the Viola-Jones object detection method: A survey," *Bulletin of the South Ural State University,* Series: Mathematical Modelling, Programming and Computer Software, vol. 14, no. 4, 2021, doi: 10.14529/mmp210401.
- [17] W. L. Khong, E. G. Moung, and C. S. Chong, "Viola–Jones Method for Robot Vision Purpose: A Software Technical Review," 2024, pp. 45–61. doi: 10.1007/978-3-031-52760-9_4.
- [18] T. H. Obaida, A. S. Jamil, and N. F. Hassan, "Real-time face detection in digital video-based on Viola-Jones supported by convolutional neural networks," *International Journal of Electrical* and Computer Engineering, vol. 12, no. 3, 2022, doi: 10.11591/ijece.v12i3.pp3083-3091.
- [19] S. Ardi Wijaya, R. Gunawan, R. Alif Faresta, A. Azzawagama Firdaus, and G. Diemesor, "A Bibliometric Analysis of Natural Language Processing and Classi-fication: Trends, Impact, and Future Directions," *Scientific Journal of Engineering Research*, vol. 2025, p. 1, 2025, doi: 10.59247/sjer.v1i1.6.
- 20] K. Patel et al., "Facial Sentiment Analysis Using AI Techniques: State-of-the-Art, Taxonomies, and Challenges," IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2993803.
- [21] K. Chamorro, R. C. Álvarez, M. C. Ahtty, and M. Quinga, "Comprehensive bibliometric analysis of advancements in artificial intelligence applications in medicine using Scopus database," Mar. 01, 2025, *Elsevier B.V.* doi: 10.1016/j.fraope.2025.100212.
- [22] A. Alashbi *et al.*, "Human face localization and detection in highly occluded unconstrained environments," *Engineering Science and Technology, an International Journal*, vol. 61, Jan. 2025, doi: 10.1016/j.jestch.2024.101893.
- [23] A. Rahman, M. B. H. Hriday, and R. Khan, "Computer vision-based approach to detect fatigue driving and face mask for edge computing device," *Heliyon*, vol. 8, no. 10, Oct. 2022, doi: 10.1016/j.heliyon.2022.e11204.
- [24] I. Gunawan, M. A. Liman, G. Ryan, and F. Purnomo, "Face Mask Detection for COVID-19 Prevention using Computer Vision," in *Procedia Computer Science*, Elsevier B.V., 2023, pp. 1143–1152. doi: 10.1016/j.procs.2023.10.626.
- [25] Y. Guan *et al.*, "Face recognition of a Lorisidae species based on computer vision," *Glob Ecol Conserv*, vol. 45, Sep. 2023, doi: 10.1016/j.gecco.2023.e02511.
- [26] H. jie Li, X. Fu, Y. fan Qin, and S. feng Jia, "Application of deep learning classification model for regional evaluation of roof pressure support evolution effects over time in coal mining face," *Heliyon*, vol. 10, no. 11, Jun. 2024, doi: 10.1016/j.heliyon.2024.e31824.
- [27] E. Beretta, C. Voto, and E. Rozera, "Decoding faces: Misalignments of gender identification in automated systems," *Journal of Responsible Technology*, vol. 19, Sep. 2024, doi: 10.1016/j.jrt.2024.100089.
- [28] Z. Jiang and C. Zhou, "Application of Multi-objective Differential Evolution Algorithm in Computer Network Intrusion Detection System," in *Procedia Computer Science*, Elsevier B.V., 2023, pp. 1059–1067. doi: 10.1016/j.procs.2023.11.139.
- [29] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2001. doi: 10.1109/cvpr.2001.990517.
- [30] R. Lienhart and J. Maydt, "An extended set of Haar-like features for rapid object detection," in IEEE International Conference on Image Processing, 2002. doi: 10.1109/icip.2002.1038171.
- [31] G. R. Bradski and Adrian. Kaehler, *Learning OpenCV computer vision with the OpenCV library:* software that sees. 2008.
- [32] C. A. Ruiz-Beltrán, A. Romero-Garcés, M. González, A. S. Pedraza, J. A. Rodríguez-Fernández, and A. Bandera, "Real-time embedded eye detection system," *Expert Syst Appl*, vol. 194, May 2022, doi: 10.1016/j.eswa.2022.116505.
- [33] E. Chatzilari, S. Nikolopoulos, I. Patras, and I. Kompatsiaris, "Enhancing computer vision using the collective intelligence of social media," *Studies in Computational Intelligence*, vol. 331, 2011, doi: 10.1007/978-3-642-17551-0_9.
- [34] Y. Feng *et al.*, "Application of artificial intelligence-based computer vision methods in liver diseases: a bibliometric analysis," *Intelligent Medicine*, Jan. 2025, doi: 10.1016/j.imed.2024.09.008.
- [35] Y. Zhang *et al.*, "Deep learning meets bibliometrics: A survey of citation function classification," *J Informetr*, vol. 19, no. 1, Feb. 2025, doi: 10.1016/j.joi.2024.101608.

- [36] M. Rizelioğlu, "An extensive bibliometric analysis of pavement deterioration detection using sensors and machine learning: Trends, innovations, and future directions," Jan. 01, 2025, *Elsevier B.V.* doi: 10.1016/j.aej.2024.09.097.
- [37] Aidi Ahmi, "biblioMagika." Accessed: Feb. 03, 2025. [Online]. Available: https://bibliomagika.com
- [38] L. Ramana, W. Choi, and Y. J. Cha, "Fully automated vision-based loosened bolt detection using the Viola–Jones algorithm," *Struct Health Monit*, vol. 18, no. 2, 2019, doi: 10.1177/1475921718757459.
- [39] Y. Xu, G. Yu, Y. Wang, X. Wu, and Y. Ma, "A hybrid vehicle detection method based on violajones and HOG + SVM from UAV images," *Sensors (Switzerland)*, vol. 16, no. 8, 2016, doi: 10.3390/s16081325.
- [40] M. Castrillón, O. Déniz, D. Hernández, and J. Lorenzo, "A comparison of face and facial feature detectors based on the Viola-Jones general object detection framework," *Mach Vis Appl*, vol. 22, no. 3, 2011, doi: 10.1007/s00138-010-0250-7.
- [41] Y. Xu, G. Yu, X. Wu, Y. Wang, and Y. Ma, "An Enhanced Viola-Jones Vehicle Detection Method from Unmanned Aerial Vehicles Imagery," *IEEE Transactions on Intelligent Transportation Systems*, vol. 18, no. 7, 2017, doi: 10.1109/TITS.2016.2617202.
- [42] K. Vikram and S. Padmavathi, "Facial parts detection using Viola Jones algorithm," in 2017 4th International Conference on Advanced Computing and Communication Systems, ICACCS 2017, 2017. doi: 10.1109/ICACCS.2017.8014636.