Machine Learning 5.0 In-depth Analysis Trends in Classification

Authors

  • Dianda Rifaldi Department of Informatics, Universitas Ahmad Dahlan, Indonesia
  • Tri Stiyo Famuji Department of Information Technology, Universitas Harapan Bangsa, Indonesia
  • Setiawan Ardi Wijaya Department of Information System, Universitas Muhammadiyah Riau, Indonesia
  • Ahmed Jaber Abougarair Electrical and Electronics Engineering, University of Tripoli, Libya
  • Phichitphon Chotikunnan College of Biomedical Engineering, Rangsit University, Thailand
  • Alfian Ma'arif Department of Electrical Engineering, Universitas Ahmad Dahlan, Indonesia
  • Furizal Department of Research and Development, Peneliti Teknologi Teknik Indonesia, Indonesia

DOI:

https://doi.org/10.64539/sjcs.v1i1.2025.18

Keywords:

Machine Leaning, Explainable AI, Federated Learning, Transfer Learning, Generative Adversarial Networks

Abstract

In the era of Technology 5.0 Machine Learning continues to show significant advancements across various sectors. This study aims to examine the latest trends in Machine Learning classification, focusing on four key approaches Explainable Artificial Intelligence, Federated Learning, Transfer Learning, and Generative Adversarial Networks. The methodology involves a comprehensive literature review of research in Asia and experimentation with related datasets. The findings indicate that Explainable Artificial Intelligence enhances transparency and accuracy in data classification, Federated Learning enables decentralized learning while safeguarding data privacy, Transfer Learning improves accuracy with small datasets, and Generative Adversarial Networks aids in data augmentation for better model training. In conclusion, these techniques not only enhance the efficiency and accuracy of classification but also open up new opportunities for innovation in various fields, including healthcare, transportation, and cybersecurity.

References

[1] D. S. M. Valente, D. M. de Queiroz, and G. W. Pereira, Machine learning. 2022. doi: 10.1007/978-3-031-14533-9_14.

[2] N. Pavitha et al., “Movie recommendation and sentiment analysis using machine learning,” Global Transitions Proceedings, vol. 3, no. 1, pp. 279–284, 2022, doi: 10.1016/j.gltp.2022.03.012.

[3] X. Kang, “Speech emotion recognition algorithm of intelligent robot based on ACO-SVM,” International Journal of Cognitive Computing in Engineering, vol. 6, no. November 2024, pp. 131–142, 2025, doi: 10.1016/j.ijcce.2024.11.008.

[4] M. R. Ali, S. M. A. Nipu, and S. A. Khan, “A decision support system for classifying supplier selection criteria using machine learning and random forest approach,” Decision Analytics Journal, vol. 7, no. May, p. 100238, 2023, doi: 10.1016/j.dajour.2023.100238.

[5] Y. Sánchez-Carro et al., “Importance of immunometabolic markers for the classification of patients with major depressive disorder using machine learning,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 121, no. March 2022, 2023, doi: 10.1016/j.pnpbp.2022.110674.

[6] V. Vukanti and A. Jose, “Business Analytics: A case-study approach using LDA topic modelling,” Proceedings - 5th International Conference on Computing Methodologies and Communication, ICCMC 2021, no. Iccmc, pp. 1818–1823, 2021, doi: 10.1109/ICCMC51019.2021.9418344.

[7] G. Song et al., “Automatic classification of multi-channel PSD results combining unsupervised and supervised learning,” Nuclear Engineering and Technology, no. November, p. 103331, 2024, doi: 10.1016/j.net.2024.11.033.

[8] M. Usama et al., “Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges,” IEEE Access, vol. 7, pp. 65579–65615, 2019, doi: 10.1109/ACCESS.2019.2916648.

[9] C. S. Wickramasinghe, K. Amarasinghe, D. L. Marino, C. Rieger, and M. Manic, “Explainable Unsupervised Machine Learning for Cyber-Physical Systems,” IEEE Access, vol. 9, pp. 131824–131843, 2021, doi: 10.1109/ACCESS.2021.3112397.

[10] C. Geiß, P. Aravena Pelizari, O. Tunçbilek, and H. Taubenböck, “Semi-supervised learning with constrained virtual support vector machines for classification of remote sensing image data,” International Journal of Applied Earth Observation and Geoinformation, vol. 125, no. September, 2023, doi: 10.1016/j.jag.2023.103571.

[11] G. Borrageiro, N. Firoozye, and P. Barucca, “The Recurrent Reinforcement Learning Crypto Agent,” IEEE Access, vol. 10, pp. 38590–38599, 2022, doi: 10.1109/ACCESS.2022.3166599.

[12] K. L. A. Yau, Y. W. Chong, X. Fan, C. Wu, Y. Saleem, and P. C. Lim, “Reinforcement Learning Models and Algorithms for Diabetes Management,” IEEE Access, vol. 11, no. January, pp. 28391–28415, 2023, doi: 10.1109/ACCESS.2023.3259425.

[13] A. Singh, W. Y. Chiu, S. H. Manoharan, and A. M. Romanov, “Energy-Efficient Gait Optimization of Snake-Like Modular Robots by Using Multiobjective Reinforcement Learning and a Fuzzy Inference System,” IEEE Access, vol. 10, no. June, pp. 86624–86635, 2022, doi: 10.1109/ACCESS.2022.3195928.

[14] A. Yavariabdi et al., “SinkholeNet: A novel RGB-slope sinkhole dataset and deep weakly-supervised learning framework for sinkhole classification and localization,” Egyptian Journal of Remote Sensing and Space Science, vol. 26, no. 4, pp. 966–973, 2023, doi: 10.1016/j.ejrs.2023.10.006.

[15] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “ScienceDirect ScienceDirect The Impact of Features Extraction on the Sentiment Analysis,” Procedia Computer Science, vol. 152, pp. 341–348, 2019, doi: 10.1016/j.procs.2019.05.008.

[16] F. E. Ayo, L. A. Ogundele, S. Olakunle, J. B. Awotunde, and F. A. Kasali, “A hybrid correlation-based deep learning model for email spam classification using fuzzy inference system,” Decision Analytics Journal, vol. 10, no. December 2023, p. 100390, 2024, doi: 10.1016/j.dajour.2023.100390.

[17] D. H. Wolpert, “The Lack of {{textbackslash}textitA} Priori Distinctions Between Learning Algorithms,” Neural Computation, vol. 8, no. 7, pp. 1341–1390, 1996.

[18] A. P. Verma Rishi, “Demystifying-explainable-artificial-intelligence,” birlasoft.com. [Online]. Available: https://www.birlasoft.com/articles/demystifying-explainable-artificial-intelligence

[19] S. Ali et al., “Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence,” Information Fusion, vol. 99, no. January, p. 101805, 2023, doi: 10.1016/j.inffus.2023.101805.

[20] L. Weber, S. Lapuschkin, A. Binder, and W. Samek, “Beyond explaining: Opportunities and challenges of XAI-based model improvement,” Information Fusion, vol. 92, pp. 154–176, 2023, doi: 10.1016/j.inffus.2022.11.013.

[21] T. Islam and I. Hyun, “Original article MEXFIC : A meta ensemble eXplainable approach for AI-synthesized fake image classification,” Alexandria Engineering Journal, vol. 116, no. June 2024, pp. 351–363, 2025, doi: 10.1016/j.aej.2024.12.031.

[22] S. V. S. Kumar and H. K. Kondaveeti, “Towards transparency in AI: Explainable bird species image classification for ecological research,” Ecological Indicators, vol. 169, no. May, 2024, doi: 10.1016/j.ecolind.2024.112886.

[23] Z. A. Khan et al., “EA-CNN: Enhanced attention-CNN with explainable AI for fruit and vegetable classification,” Heliyon, vol. 10, no. 23, p. e40820, 2024, doi: 10.1016/j.heliyon.2024.e40820.

[24] F. M. J. M. Shamrat et al., “PollenNet: A novel architecture for high precision pollen grain classification through deep learning and explainable AI,” Heliyon, vol. 10, no. 19, p. e38596, 2024, doi: 10.1016/j.heliyon.2024.e38596.

[25] P. Kairouz et al., “Advances and open problems in federated learning,” Foundations and Trends in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021, doi: 10.1561/2200000083.

[26] A. S. Gills, “Transfer Learning,” TechTarget. [Online]. Available: https://www.techtarget.com/searchcio/definition/transfer-learning

[27] Z. Jin, K. Duan, C. Chen, M. He, S. Jiang, and H. Xue, “FedETC: Encrypted traffic classification based on federated learning,” Heliyon, vol. 10, no. 16, p. e35962, 2024, doi: 10.1016/j.heliyon.2024.e35962.

[28] K. N. Neuhäusler, N. H. Wittek, M. Klaiber, F. Gerschner, M. Fernandes, and M. Rössle, “Federated Learning for Sound Data: Accurate Fan Noise Classification with a Multi-Microphone Setup,” Procedia Computer Science, vol. 246, no. C, pp. 1992–2001, 2024, doi: 10.1016/j.procs.2024.09.674.

[29] A. A. Siddique, N. Alasbali, M. Driss, W. Boulila, M. S. Alshehri, and J. Ahmad, “Sustainable collaboration: Federated learning for environmentally conscious forest fire classification in Green Internet of Things (IoT),” Internet of Things (Netherlands), vol. 25, no. November 2023, p. 101013, 2024, doi: 10.1016/j.iot.2023.101013.

[30] G. Idoje, T. Dagiuklas, and M. Iqbal, “Federated Learning: Crop classification in a smart farm decentralised network,” Smart Agricultural Technology, vol. 5, p. 100277, 2023, doi: 10.1016/j.atech.2023.100277.

[31] T. Murai, Y. Inoue, A. Nambirige, and G. A. Annor, “Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning,” Heliyon, vol. 9, no. 10, p. e20522, 2023, doi: 10.1016/j.heliyon.2023.e20522.

[32] F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2021, doi: 10.1109/JPROC.2020.3004555.

[33] R. Sekhar et al., “Noise robust classification of carbide tool wear in machining mild steel using texture extraction based transfer learning approach for predictive maintenance,” Results in Control and Optimization, vol. 17, no. September 2023, p. 100491, 2024, doi: 10.1016/j.rico.2024.100491.

[34] J. Tanvir, S. T. Mehedi, B. K. Paul, and M. Morshed, “TrashNeXt: Classification of recyclable water pollutants using deep transfer learning method,” Case Studies in Chemical and Environmental Engineering, vol. 11, no. December 2024, 2025, doi: 10.1016/j.cscee.2024.101073.

[35] S. Matin Malakouti, M. Bagher Menhaj, and A. Abolfazl Suratgar, “Machine learning and transfer learning techniques for accurate brain tumor classification,” Clinical eHealth, vol. 7, pp. 106–119, 2024, doi: 10.1016/j.ceh.2024.08.001.

[36] M. Ahishali, A. Degerli, S. Kiranyaz, T. Hamid, R. Mazhar, and M. Gabbouj, “R2C-GAN: Restore-to-Classify Generative Adversarial Networks for blind X-ray restoration and COVID-19 classification,” Pattern Recognition, vol. 156, no. September 2023, p. 110765, 2024, doi: 10.1016/j.patcog.2024.110765.

[37] J. Hwang and D. Suh, “CC-GAIN: Clustering and classification-based generative adversarial imputation network for missing electricity consumption data imputation,” Expert Systems with Applications, vol. 255, no. PA, p. 124507, 2024, doi: 10.1016/j.eswa.2024.124507.

[38] I. Govindharaj, D. Santhakumar, K. Pugazharasi, S. Ravichandran, R. Vijaya Prabhu, and J. Raja, “Enhancing glaucoma diagnosis: Generative adversarial networks in synthesized imagery and classification with pretrained MobileNetV2,” MethodsX, vol. 14, no. November 2024, p. 103116, 2025, doi: 10.1016/j.mex.2024.103116.

[39] Admin, “What is GAN,” aws amazon. [Online]. Available: https://aws.amazon.com/id/what-is/gan/

[40] R. Yang et al., “Interpretable machine learning for weather and climate prediction: A review,” Atmospheric Environment, vol. 338, 2024, doi: 10.1016/j.atmosenv.2024.120797.

[41] Z. Zhang, S. Rath, J. Xu, and T. Xiao, “Federated Learning for Smart Grid: A Survey on Applications and Potential Vulnerabilities,” 2024.

[42] M. M. Hossain, M. M. Hossain, M. B. Arefin, F. Akhtar, and J. Blake, “Combining State-of-the-Art Pre-Trained Deep Learning Models: A Noble Approach for Skin Cancer Detection Using Max Voting Ensemble,” Diagnostics, vol. 14, no. 1, 2024, doi: 10.3390/diagnostics14010089.

[43] M. Rizzato, J. Wallart, C. Geissler, N. Morizet, and N. Boumlaik, “Generative Adversarial Networks applied to synthetic financial scenarios generation,” Physica A: Statistical Mechanics and its Applications, vol. 623, 2023, doi: 10.1016/j.physa.2023.128899.

[44] H. A. Tahir, W. Alayed, W. U. Hassan, and A. Haider, “A Novel Hybrid XAI Solution for Autonomous Vehicles: Real-Time Interpretability Through LIME–SHAP Integration,” Sensors, vol. 24, no. 21, 2024, doi: 10.3390/s24216776.

[45] M. T. Hosain, M. R. Abir, M. Y. Rahat, M. F. Mridha, and S. H. Mukta, “Privacy Preserving Machine Learning with Federated Personalized Learning in Artificially Generated Environment,” IEEE Open Journal of the Computer Society, 2024, doi: 10.1109/OJCS.2024.3466859.

[46] A. Joshi, B. Pradhan, S. Chakraborty, R. Varatharajoo, S. Gite, and A. Alamri, “Deep-Transfer-Learning Strategies for Crop Yield Prediction Using Climate Records and Satellite Image Time-Series Data,” Remote Sensing, vol. 16, no. 24, 2024, doi: 10.3390/rs16244804.

[47] Y. Chen et al., “Generative Adversarial Networks in Medical Image augmentation: A review,” Computers in Biology and Medicine, vol. 144, 2022, doi: 10.1016/j.compbiomed.2022.105382.

[48] P. Sharon Femi, K. Ashwini, A. Kala, and V. Rajalakshmi, “Explainable Artificial Intelligence for Cybersecurity,” Wireless Communication for Cybersecurity, pp. 149–174, 2023, doi: 10.1002/9781119910619.ch7.

[49] M. Baqer, “Energy-Efficient Federated Learning for Internet of Things: Leveraging In-Network Processing and Hierarchical Clustering,” Future Internet, vol. 17, no. 1, 2025, doi: 10.3390/fi17010004.

[50] D. Sasikala and S. H. Fazil, “Enhancing Communication: Utilizing Transfer Learning for Improved Speech-to-Text Transcription,” 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024, 2024, doi: 10.1109/ICCCNT61001.2024.10725694.

[51] N. Klyuchnikov, L. Ismailova, D. Kovalev, S. Safonov, and D. Koroteev, “Generative Adversarial Networks for synthetic wellbore data: Expert perception vs mathematical metrics,” Journal of Petroleum Science and Engineering, vol. 211, 2022, doi: 10.1016/j.petrol.2022.110106.

[52] N. Klyuchnikov, L. Ismailova, D. Kovalev, S. Safonov, and D. Koroteev, “Generative Adversarial Networks for synthetic wellbore data: Expert perception vs mathematical metrics,” Journal of Petroleum Science and Engineering, vol. 211, 2022, doi: 10.1016/j.petrol.2022.110106.

[53] B. Yurdem, M. Kuzlu, M. K. Gullu, F. O. Catak, and M. Tabassum, “Federated learning: Overview, strategies, applications, tools and future directions,” Heliyon, vol. 10, no. 19, 2024, doi: 10.1016/j.heliyon.2024.e38137.

[54] A. Dalklran et al., “Transfer learning for drug-target interaction prediction,” Bioinformatics, vol. 39, pp. I103–I110, 2023, doi: 10.1093/bioinformatics/btad234.

[55] B. Vega-Márquez, C. Rubio-Escudero, and I. Nepomuceno-Chamorro, “Generation of Synthetic Data with Conditional Generative Adversarial Networks,” Logic Journal of the IGPL, vol. 30, no. 2, pp. 252–262, 2022, doi: 10.1093/jigpal/jzaa059.

[56] C. V. Sai, D. Das, N. Elmitwally, O. Elezaj, and B. Islam, “Explainable AI-Driven Financial Transaction Fraud Detection using Machine Learning and Deep Neural Networks,” 2023.

[57] R. Al-Huthaifi, T. Li, W. Huang, J. Gu, and C. Li, “Federated learning in smart cities: Privacy and security survey,” Information Sciences, vol. 632, pp. 833–857, 2023, doi: 10.1016/j.ins.2023.03.033.

[58] H. Kath, P. P. Serafini, I. B. Campos, T. S. Gouvêa, and D. Sonntag, “Leveraging transfer learning and active learning for data annotation in passive acoustic monitoring of wildlife,” Ecological Informatics, vol. 82, 2024, doi: 10.1016/j.ecoinf.2024.102710.

[59] Y. Akkem, S. K. Biswas, and A. Varanasi, “A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network,” Engineering Applications of Artificial Intelligence, vol. 131, 2024, doi: 10.1016/j.engappai.2024.107881.

[60] R. Bouderhem, “A Comprehensive Framework for Transparent and Explainable AI Sensors in Healthcare,” in ECSA-11, Basel Switzerland: MDPI, Nov. 2024, p. 49. doi: 10.3390/ecsa-11-20524.

[61] M. Omar, D. Brin, B. Glicksberg, and E. Klang, “Utilizing natural language processing and large language models in the diagnosis and prediction of infectious diseases: A systematic review,” American Journal of Infection Control, vol. 52, no. 9, pp. 992–1001, 2024, doi: 10.1016/j.ajic.2024.03.016.

[62] F. Ramzan, C. Sartori, S. Consoli, and D. Reforgiato Recupero, “Generative Adversarial Networks for Synthetic Data Generation in Finance: Evaluating Statistical Similarities and Quality Assessment,” AI (Switzerland), vol. 5, no. 2, pp. 667–685, 2024, doi: 10.3390/ai5020035.

[63] X. Hu, A. Liu, X. Li, Y. Dai, and M. Nakao, “Explainable AI for customer segmentation in product development,” CIRP Annals, vol. 72, no. 1, pp. 89–92, 2023, doi: 10.1016/j.cirp.2023.03.004.

Downloads

Published

2025-02-09

How to Cite

Dianda Rifaldi, Tri Stiyo Famuji, Setiawan Ardi Wijaya, Ahmed Jaber Abougarair, Phichitphon Chotikunnan, Alfian Ma’arif, & Furizal. (2025). Machine Learning 5.0 In-depth Analysis Trends in Classification. Scientific Journal of Computer Science, 1(1), 1–15. https://doi.org/10.64539/sjcs.v1i1.2025.18