DOI:
https://doi.org/10.64539/sjcs.v1i1.2025.34Keywords:
Cox Proportional Hazard Regression, Farmers' Participation, Rice Farming Insurance, Weibull Regression, Willingness-to-PayAbstract
Rice is a primary commodity in Indonesia's agricultural sector but is highly vulnerable to climate risks such as floods, droughts, and pest infestations. To mitigate these risks, the government, in collaboration with PT. Asuransi Jasa Indonesia (Jasindo), launched the Rice Farming Insurance Program (AUTP) in 2015. This study aims to analyze the willingness-to-pay time of farmers for AUTP premiums in Jayaraksa Village, Cimaragas Subdistrict, Ciamis Regency, using Weibull regression and Cox Proportional Hazard models. Factors such as education, secondary employment, rice production, and farming costs were examined to understand their influence on farmers' participation. Based on the analysis, the Weibull regression model, with a lower AIC value compared to Cox Proportional Hazard (270.4431 vs. 330.9111), demonstrated better performance in explaining the data. This research contributes to the development of more effective AUTP policies by identifying key factors influencing farmers' participation.
References
[1] R. Tirtalistyani, M. Murtiningrum, and R. S. Kanwar, “Indonesia Rice Irrigation System: Time for Innovation,” Sustainability, vol. 14, no. 19, p. 12477, Sep. 2022, doi: 10.3390/su141912477.
[2] T. Sitaresmi et al., “Advances in the development of rice varieties with better nutritional quality in Indonesia,” J Agric Food Res, vol. 12, p. 100602, Jun. 2023, doi: 10.1016/j.jafr.2023.100602.
[3] Sutardi et al., “The Transformation of Rice Crop Technology in Indonesia: Innovation and Sustainable Food Security,” Agronomy, vol. 13, no. 1, p. 1, Dec. 2022, doi: 10.3390/agronomy13010001.
[4] T. D. N. Ho, J. K. M. Kuwornu, T. W. Tsusaka, L. T. Nguyen, and A. Datta, “An assessment of the smallholder rice farming households’ vulnerability to climate change and variability in the Mekong delta region of Vietnam,” Local Environ, vol. 26, no. 8, pp. 948–966, Aug. 2021, doi: 10.1080/13549839.2021.1937971.
[5] S. Weerasekara, C. Wilson, B. Lee, and V.-N. Hoang, “Impact of natural disasters on the efficiency of agricultural production: an exemplar from rice farming in Sri Lanka,” Clim Dev, vol. 14, no. 2, pp. 133–146, Feb. 2022, doi: 10.1080/17565529.2021.1893635.
[6] R. Darma, P. O’Connor, R. Akzar, A. N. Tenriawaru, and R. Amandaria, “Enhancing Sustainability in Rice Farming: Institutional Responses to Floods and Droughts in Pump-Based Irrigation Systems in Wajo District, Indonesia,” Sustainability, vol. 17, no. 8, p. 3501, Apr. 2025, doi: 10.3390/su17083501.
[7] Maemunah, M. N. Y. Utomo, and R. Nur, “Development of an Agricultural Department Application to Predict Small Chili Prices,” Jurnal Teknologi Elekterika, vol. 21, no. 2, pp. 100–110, Nov. 2024, doi: 10.31963/elekterika.v21i2.5104.
[8] Y. Ngongo et al., “Land Cover Change and Food Security in Central Sumba: Challenges and Opportunities in the Decentralization Era in Indonesia,” Land (Basel), vol. 12, no. 5, p. 1043, May 2023, doi: 10.3390/land12051043.
[9] N. Ngadi et al., “Challenge of Agriculture Development in Indonesia: Rural Youth Mobility and Aging Workers in Agriculture Sector,” Sustainability, vol. 15, no. 2, p. 922, Jan. 2023, doi: 10.3390/su15020922.
[10] L. R. E. Malau, A. T. Darhyati, and Suharno, “The impact of climate change and natural disasters on food security in Indonesia: lessons learned on preserving forests sustainability,” IOP Conf Ser Earth Environ Sci, vol. 886, no. 1, p. 012090, Nov. 2021, doi: 10.1088/1755-1315/886/1/012090.
[11] B. Rachman et al., “Sustainability status, sensitive and key factors for increasing rice production: A case study in West Java, Indonesia,” PLoS One, vol. 17, no. 12, p. e0274689, Dec. 2022, doi: 10.1371/journal.pone.0274689.
[12] M. Jamaludin, “Indonesia’s Food Security Challenges: How Food SOE Optimizes its Role?,” Research Horizon, vol. 2, no. 3, pp. 394–401, Jun. 2022, doi: 10.54518/rh.2.3.2022.394-401.
[13] M. A. Syah, M. Mukson, and W. Roessali, “Farmer Satisfaction Analysis on Rice Farming Insurance Program in Tegal Regency,” Agrisocionomics: Jurnal Sosial Ekonomi Pertanian, vol. 5, no. 1, pp. 40–55, Jun. 2021, doi: 10.14710/agrisocionomics.v5i1.7361.
[14] M. I. Rachman, N. Nuryartono, B. Arifin, and T. Bakhtiar, “Optimizing crop insurance strategy as a protection tool from crop failure, due to climate change through private sector involvement,” IOP Conf Ser Earth Environ Sci, vol. 739, no. 1, p. 012029, Apr. 2021, doi: 10.1088/1755-1315/739/1/012029.
[15] E. Ellyta, Ekawati, R. Rizieq, and M. A. Anggreni, “Analysis of farmers’ perceptions of the rice farming AUTP program in Landak Regency,” IOP Conf Ser Earth Environ Sci, vol. 951, no. 1, p. 012029, Jan. 2022, doi: 10.1088/1755-1315/951/1/012029.
[16] I. Dwijayana and S. D. W. Prajanti, “Farmer’s Perception of Rice Farming Insurance Program,” Efficient: Indonesian Journal of Development Economics, vol. 4, no. 3, pp. 1350–1360, Dec. 2021, doi: 10.15294/efficient.v4i3.46702.
[17] B. Silaban, B. Burhanuddin, and H. Harmini, “The Impact of Rice Farm Insurance on The Income of Farmers In Indonesia,” Jurnal Manajemen dan Agribisnis, Mar. 2022, doi: 10.17358/jma.19.1.59.
[18] S. Landini and K. Noussia, “The Role of Insurance in Dealing with Disasters: The Case of Agricultural Insurance,” in Cross-Disciplinary Impacts on Insurance Law, 2024, pp. 53–71. doi: 10.1007/978-3-031-38526-1_3.
[19] M. Robles, “Agricultural insurance for development: Past, present, and future,” 2020. doi: 10.2499/9780896293830_17.
[20] R. Shofiyati, S. M. Pasaribu, M. Ardha, and Y. R. Irawan, “Climate Change Adaptation: Remote Sensing-Based Flood Crop Loss Assessment to Support Crop Insurance,” in Agriculture, Livestock Production and Aquaculture, Cham: Springer International Publishing, 2022, pp. 167–179. doi: 10.1007/978-3-030-93258-9_10.
[21] Md. S. Hossain, “Assessing smallholder farmers’ flood risk behavior and their willingness to pay for crop insurance as a risk coping strategy in northern Bangladesh,” Natural Hazards, vol. 121, no. 4, pp. 4191–4217, Mar. 2025, doi: 10.1007/s11069-024-06958-7.
[22] Md. M. Islam, T. Ahamed, S. Matsushita, and R. Noguchi, “A Damage-Based Crop Insurance System for Flash Flooding: A Satellite Remote Sensing and Econometric Approach,” in Remote Sensing Application II, 2024, pp. 121–163. doi: 10.1007/978-981-97-1188-8_5.
[23] I. S. Anugrah and H. H. Setiawan, “Local Wisdom-Based Food Security in Facing the Climate Crisis in Indonesia,” in Climate Crisis, Social Responses and Sustainability, 2024, pp. 561–582. doi: 10.1007/978-3-031-58261-5_24.
[24] W. D. Prastiwi, T. Dalmiyatun, and W. Roessali, “Farmers’ preference of agricultural insurance product’s attributes in Pati Regency,” in The Third International Symposium on Food and Agrobiodiversity (ISFA 2021): Opportunities and Challenges of Sustainable Agriculture and Food Production during Global Pandemic, 2023, p. 050006. doi: 10.1063/5.0106702.
[25] L. S. Ringo, H. Siregar, N. Kusnadi, and H. Harianto, “Enhancing Farmers’ Insurance Literacy: Key To Improving AUTP Accessibility in Aceh Province,” Jurnal Manajemen dan Agribisnis, vol. 22, no. 1, p. 120, Mar. 2025, doi: 10.17358/jma.22.1.120.
[26] R. Kousar, T. I. Ahmad, S. Abbas, and M. A. Bhatti, “Factors Affecting Farmers’ Willingness to Pay for Agricultural Insurance: A Literature Survey (2004-2023),” iRASD Journal of Economics, vol. 5, no. 2, pp. 598–611, Jun. 2023, doi: 10.52131/joe.2023.0502.0149.
[27] A. Wodaju, Z. Nigussie, A. Yitayew, B. Tegegne, A. Wubalem, and S. Abele, “Factors influencing farmers’ willingness to pay for weather-indexed crop insurance policies in rural Ethiopia,” Environ Dev Sustain, vol. 27, no. 4, pp. 8951–8976, Dec. 2023, doi: 10.1007/s10668-023-04262-1.
[28] V. Hoang and V. Nguyen, “Determinants of small farmers’ participation in contract farming in developing countries: A study in Vietnam,” Agribusiness, vol. 39, no. 3, pp. 836–853, Jul. 2023, doi: 10.1002/agr.21795.
[29] D. A. Ankrah, N. A. Kwapong, D. Eghan, F. Adarkwah, and D. Boateng-Gyambiby, “Agricultural insurance access and acceptability: examining the case of smallholder farmers in Ghana,” Agric Food Secur, vol. 10, no. 1, p. 19, Dec. 2021, doi: 10.1186/s40066-021-00292-y.
[30] O. Parmaksiz and G. Cinar, “Technology Acceptance among Farmers: Examples of Agricultural Unmanned Aerial Vehicles,” Agronomy, vol. 13, no. 8, p. 2077, Aug. 2023, doi: 10.3390/agronomy13082077.
[31] Mayawi, Nurhayati, N. S. Laamena, A. Widyastuty, M. Salmin, and T. Talib, “Perbandingan Model Regresi Weibull and Regresi Cox Proposional Hazard( Studi Kasus Pada Pasien Infark Miokard Akut di RSUP . Dr . Sardjito Yogyakarta),” Science Map, vol. 4, no. 2, pp. 49–60, 2022, [Online]. Available: https://ojs3.unpatti.ac.id/index.php/sciencemap/article/view/6172
[32] S. Damayanti, T. Wuryandari, and S. Sudarno, “Perbandingan Analisis Survival Menggunakan Regresi Cox Proportional Hazard Dan Regresi Weibull Pada Pasien Covid-19 Di Rsud Taman Husada Bontang,” Jurnal Gaussian, vol. 12, no. 3, pp. 453–464, 2023, doi: 10.14710/j.gauss.12.3.453-464.
[33] A. Azizy, Suyitno, and M. Siringoringo, “Model Regresi Cox Proportional Hazard Weibull pada Data Waktu Rawat Inap Pasien Penderita Covid-19 di RSUD Abdul Wahab Sjahranie Samarinda,”Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, pp. 143–160, 2023, [Online]. Available: https://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/1179
[34] S. Sulantari and W. Hariadi, “Analisis Survival Model Regresi Cox Pada Lama Waktu Sembuh Pasien Gejala Sedang Covid-19,” Unisda Journal of Mathematics and Computer Science (UJMC), vol. 8, no. 1, pp. 43–54, 2022, doi: 10.52166/ujmc.v8i1.3070.
[35] R. Widyastuti, D. Wulandari, and D. Prasetyowati, “Penerapan regresi cox untuk menganalisis variabel yang berpengaruh terhadap durasi studi mahasiswa,” vol. 13, pp. 88–98, 2024, doi: 10.14710/j.gauss.13.1.88-98.
[36] H. D. Panduwinata, Suyitno, and M. N. Huda, “Model Regresi Weibull Pada Data Kontinu yang Diklasifikasikan (Studi Kasus: Indikator Pencemaran Air BOD di DAS Mahakam Tahun 2016),” Jurnal Eksponensial , vol. 13, pp. 123–130, 2022.
[37] T. Wuryandari, Danardono, and Gunardi, “Model Regresi Cox Proporsional Hazard pada Data Durasi Proses Kelahiran dengan Ties,” Statistika, vol. 9, no. 1, pp. 47–55, 2021, doi: https://doi.org/10.26714/jsunimus.9.1.2021.47-55.
[38] A. S. Khinanti, S. Sudarno, and T. Wuryandari, “Model Regresi Cox Proportional Hazard Pada Data Ketahanan Hidup Pasien Hemodialisa,” Jurnal Gaussian, vol. 10, no. 2, pp. 303–314, 2021, doi: 10.14710/j.gauss.v10i2.30958.
[39] Hasmiati, Suyitno, and Y. N. Nasution, “Model Regresi Weibull Pada Data Waktu Rawat Inap Pasien Penderita Penyakit Jantung Koroner Dengan Event Kematian Di Rsud Abdul Wahab Sjahranie Samarinda,” Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, pp. 369–376, 2022.
[40] W. W. Cahyani and F. Rakhmawati, “Analisis Survival Menggunakan Regresi Weibull Pada Laju Kesembuhan Pasien Jantung Koroner Survival Analysis Using Weibull Regression on the Recovery Rate of Coronary Heart Patients,” vol. 9, no. 2, pp. 39–45, 2024, doi: https://doi.org/10.26740/sainsmat..v9n2.p39-45.