DOI:
https://doi.org/10.64539/sjer.v1i3.2025.30Keywords:
Blockchain, Smart contracts, Thirdweb, genetic data, Decentralized storage, Ethereum, IPFSAbstract
Human genetic data, crucial for advancing personalized medicine, requires secure and privacy-preserving management solutions. Traditional approaches face challenges in scalability, security, and decentralized access control. This study proposes a blockchain-based framework leveraging Thirdweb and Ethereum smart contracts to address these issues. The framework integrates decentralized storage via IPFS for cost-efficient off-chain genetic data storage, while on-chain smart contracts manage access control, encryption, and audit trails. Utilizing Solidity for smart contract development, the system ensures role-based permissions, wallet-based authentication, and immutable transaction logging. Genetic data in FASTA format, sourced from NCBI, is encrypted and linked to IPFS hashes stored on the blockchain. The architecture supports dual interfaces—command-line for developers and a Thirdweb dashboard for end-users—enabling secure data upload, access, and monitoring. Testing demonstrated functional efficacy in data integrity, access verification, and audit capabilities. Results highlight the system’s ability to enhance privacy, eliminate intermediaries, and provide transparent data governance. The integration of Thirdweb further decentralizes operations, aligning with Web 3.0 principles. Key contributions include a scalable model for genetic data sharing, a customizable smart contract template, and a user-centric design. Future work should explore advanced encryption, real-world healthcare integration, and performance optimization under high-throughput conditions. This research bridges biotechnology and blockchain, offering a robust foundation for secure genomic data ecosystems.
References
[1] T. S. Famuji, H. Herman, and S. Sunardi, “Proses Implementasi Bioinformatika pada Dig-italisasi Data Genetika Manusia,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 14, no. 1, pp. 1–12, May 2023, doi: 10.24176/simet.v14i1.9064.
[2] E. V. Minikel, J. L. Painter, C. C. Dong, and M. R. Nelson, “Refining the impact of genetic evidence on clinical success,” Nature, vol. 629, no. 8012, pp. 624–629, May 2024, doi: 10.1038/s41586-024-07316-0.
[3] C. Pereira et al., “Security and Privacy in Physical–Digital Environments: Trends and Opportunities,” Futur. Internet, vol. 17, no. 2, p. 83, Feb. 2025, doi: 10.3390/fi17020083.
[4] T. Kukman and S. Gričar, “Blockchain for Quality: Advancing Security, Efficiency, and Transparency in Financial Systems,” FinTech, vol. 4, no. 1, p. 7, Feb. 2025, doi: 10.3390/fintech4010007.
[5] T. S. Famuji, H. Herman, and S. Sunardi, “Smart Contract Penyimpanan Data Genetika Manusia Berbiaya Murah pada Blockchain Ethereum,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 3, pp. 695–704, Jul. 2024, doi: 10.25126/jtiik.1137558.
[6] A. Raja Santhi and P. Muthuswamy, “Pandemic, War, Natural Calamities, and Sustainability: Industry 4.0 Technologies to Overcome Traditional and Contemporary Supply Chain Challenges,” Logistics, vol. 6, no. 4, p. 81, Nov. 2022, doi: 10.3390/logistics6040081.
[7] N. Berros, F. El Mendili, Y. Filaly, and Y. El Bouzekri El Idrissi, “Enhancing Digital Health Services with Big Data Analytics,” Big Data Cogn. Comput., vol. 7, no. 2, p. 64, Mar. 2023, doi: 10.3390/bdcc7020064.
[8] P. Kováč et al., “Artificial Intelligence-Driven Facial Image Analysis for the Early Detection of Rare Diseases: Legal, Ethical, Forensic, and Cybersecurity Considerations,” AI, vol. 5, no. 3, pp. 990–1010, Jun. 2024, doi: 10.3390/ai5030049.
[9] J. Merhej, H. Harb, A. Abouaissa, and L. Idoumghar, “Toward a New Era of Smart and Secure Healthcare Information Exchange Systems: Combining Blockchain and Artificial Intelligence,” Appl. Sci., vol. 14, no. 19, p. 8808, Sep. 2024, doi: 10.3390/app14198808.
[10] S. Rathor, M. Zhang, and T. Im, “Web 3.0 and Sustainability: Challenges and Research Opportunities,” Sustainability, vol. 15, no. 20, p. 15126, Oct. 2023, doi: 10.3390/su152015126.
[11] A. K. Goel, R. Bakshi, and K. K. Agrawal, “Web 3.0 and Decentralized Applications,” in The 2nd International Conference on Innovative Research in Renewable Energy Technologies (IRRET 2022), Basel Switzerland: MDPI, Jul. 2022, p. 8. doi: 10.3390/materproc2022010008.
[12] C. Kontos, T. Panagiotakopoulos, and A. Kameas, “Applications of Blockchain and Smart Contracts to Address Challenges of Cooperative, Connected, and Automated Mobility,” Sensors, vol. 24, no. 19, p. 6273, Sep. 2024, doi: 10.3390/s24196273.
[13] G. Palaiokrassas et al., “Combining blockchains, smart contracts, and complex sensors management platform for hyper-connected smartcities: An IoT data marketplace use case,” Computers, vol. 10, no. 10, 2021, doi: 10.3390/computers10100133.
[14] A. Musamih, K. Salah, R. Jayaraman, S. Ellahham, M. Omar, and I. Yaqoob, “Blockchain and NFT-based Solution for Genomic Data Management, Sharing, and Monetization,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3544643.
[15] S. Chen, Q. Cao, and Y. Cai, “Blockchain for Healthcare Games Management,” Electronics, vol. 12, no. 14, p. 3195, Jul. 2023, doi: 10.3390/electronics12143195.
[16] G. Tripathi, M. A. Ahad, and G. Casalino, “A comprehensive review of blockchain technology: Underlying principles and historical background with future challenges,” Decis. Anal. J., vol. 9, p. 100344, Dec. 2023, doi: 10.1016/j.dajour.2023.100344.
[17] Y. Zhu, Q. Guo, H. Yin, K. Liang, and S. S. Yau, “Blockchain-Based Software Architecture Development for Service Requirements With Smart Contracts,” Computer (Long. Beach. Calif)., vol. 54, no. 12, pp. 72–80, Dec. 2021, doi: 10.1109/MC.2021.3091379.
[18] A. Singh, A. Gutub, A. Nayyar, and M. K. Khan, “Redefining food safety traceability system through blockchain: findings, challenges and open issues,” Multimed. Tools Appl., vol. 82, no. 14, pp. 21243–21277, 2023, doi: 10.1007/s11042-022-14006-4.
[19] F. Alzhrani, K. Saeedi, and L. Zhao, “Architectural Patterns for Blockchain Systems and Application Design,” Appl. Sci., vol. 13, no. 20, p. 11533, Oct. 2023, doi: 10.3390/app132011533.
[20] M. Ul Hassan, M. H. Rehmani, and J. Chen, “Differential privacy in blockchain technology: A futuristic approach,” J. Parallel Distrib. Comput., vol. 145, pp. 50–74, Nov. 2020, doi: 10.1016/j.jpdc.2020.06.003.
[21] J. P. Eisenbarth, T. Cholez, and O. Perrin, “Ethereum’s Peer-to-Peer Network Monitoring and Sybil Attack Prevention,” J. Netw. Syst. Manag., vol. 30, no. 4, 2022, doi: 10.1007/s10922-022-09676-2.
[22] L. Zhang and D. Kim, “A Peer-to-Peer Smart Food Delivery Platform Based on Smart Contract,” Electronics, vol. 11, no. 12, p. 1806, Jun. 2022, doi: 10.3390/electronics11121806.
[23] Z. Wang, H. Jin, W. Dai, K.-K. R. Choo, and D. Zou, “Ethereum smart contract security research: survey and future research opportunities,” Front. Comput. Sci., vol. 15, no. 2, p. 152802, Apr. 2021, doi: 10.1007/s11704-020-9284-9.
[24] A. Iftekhar, X. Cui, Q. Tao, and C. Zheng, “Hyperledger Fabric Access Control System for Internet of Things Layer in Blockchain-Based Applications,” Entropy, vol. 23, no. 8, p. 1054, Aug. 2021, doi: 10.3390/e23081054.
[25] G. Hernández-Oregón, M. E. Rivero-Angeles, J. C. Chimal-Eguía, and J. E. Coyac-Torres, “Performance Analysis of P2P Networks with Light Communication Links: The Static Managed Case,” Appl. Sci., vol. 13, no. 13, 2023, doi: 10.3390/app13137906.
[26] M. Pineda, D. Jabba, W. Nieto-Bernal, and A. Pérez, “Sustainable Consensus Algorithms Applied to Blockchain: A Systematic Literature Review,” Sustain., vol. 16, no. 23, 2024, doi: 10.3390/su162310552.
[27] M. A. Hisseine, D. Chen, and X. Yang, “The Application of Blockchain in Social Media: A Systematic Literature Review,” Appl. Sci., vol. 12, no. 13, p. 6567, Jun. 2022, doi: 10.3390/app12136567.
[28] I. Afrianto, A. Heryandi, and S. Atin, “Blockchain-based Trust, Transparent, Traceable Modeling on Learning Recognition System Kampus Merdeka,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 2, pp. 339–352, Mar. 2023, doi: 10.30812/matrik.v22i2.2780.
[29] R. Afrinanda, L. Efrizoni, W. Agustin, and R. Rahmiati, “Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 2, pp. 309–324, Mar. 2023, doi: 10.30812/matrik.v22i2.2640.
[30] L. Ante, “Smart Contracts on the Blockchain – A Bibliometric Analysis and Review,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3576393.
[31] O. Ali, M. Ally, P. Clutterbuck, and Y. Dwivedi, “The state of play of blockchain technology in the financial services sector: A systematic literature review,” Int. J. Inf. Manage., vol. 54, p. 102199, Oct. 2020, doi: 10.1016/j.ijinfomgt.2020.102199.
[32] H. Taherdoost, “Smart Contracts in Blockchain Technology: A Critical Review,” Information, vol. 14, no. 2, p. 117, Feb. 2023, doi: 10.3390/info14020117.
[33] G. Habib, S. Sharma, S. Ibrahim, I. Ahmad, S. Qureshi, and M. Ishfaq, “Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing,” Futur. Internet, vol. 14, no. 11, p. 341, Nov. 2022, doi: 10.3390/fi14110341.
[34] M. Bartoletti and L. Pompianu, “An Empirical analysis of smart contracts: Platforms, applications, and design patterns,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10323 LNCS, pp. 494–509, 2017, doi: 10.1007/978-3-319-70278-0_31.
[35] X. Wang, “Research on the Application of Blockchain Technology and Smart Contracts in the Financial Industry,” Front. Business, Econ. Manag., vol. 15, no. 2, pp. 392–395, May 2024, doi: 10.54097/gx0qhy44.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tri Stiyo Famuji, Bernadine Grancho, Galih Pramjuja Inggam Fanani, Hidear Talirongan, Raden Bagus Bambang Sumantri

This work is licensed under a Creative Commons Attribution 4.0 International License.

