DOI:
https://doi.org/10.64539/msts.v1i1.2025.24Keywords:
Medical Equipment, Sales Forecasting, Double Exponential Smoothing, Time Series Analysis, Inventory ManagementAbstract
Accurate sales forecasting plays a critical role in inventory management, particularly for medical equipment companies where stock availability directly affects operational efficiency and customer service. However, many small and medium-scale distributors still lack reliable forecasting systems, resulting in overstocking, high storage costs, or stockouts that lead to missed sales opportunities. Addressing this gap, this study aims to develop a web-based sales prediction system for PT Etiqa Prima Utama—a medical equipment distributor in Padang, West Sumatra—by applying the Double Exponential Smoothing method. The system was designed using PHP and MySQL to generate monthly sales forecasts for various medical products based on historical data. Key findings show diverse forecast accuracy across 20 product categories. The Glucose HK product achieved the lowest MAPE value at 10%, indicating excellent predictive performance, while the Clean Chem product showed the highest MAPE at 54%. Several other products, such as Total Bilirubin (12%), Urea (10%), and Diluent 20L (14%), demonstrated favorable accuracy with MAPE values below 60%. These results imply that Double Exponential Smoothing can support inventory optimization by providing reasonably accurate forecasts for most products, enabling better stock planning and more informed decision-making within the company.
References
[1] R. Purnamasari, A. I. Hasanudin, R. Zulfikar, and H. Yazid, “Technological infrastructure and financial resource availability in enhancing public services and government performance: The role of digital innovation adoption in Indonesia,” Social Sciences & Humanities Open, vol. 11, p. 101621, 2025, https://doi.org/10.1016/j.ssaho.2025.101621.
[2] F. Z. Fahmi and M. J. S. Mendrofa, “Rural transformation and the development of information and communication technologies: Evidence from Indonesia,” Technol Soc, vol. 75, p. 102349, Nov. 2023, https://doi.org/10.1016/j.techsoc.2023.102349.
[3] C. D. I. Suryaningrum, N. Yudistira, and K. Rahman, “Perbandingan Metode Fuzzy Time Series Average-Based Interval dan Long Short-Term Memory untuk Peramalan Harga Komoditi Kopi Arabika Sumatera Utara,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 8, pp. 3708–3715, 2022. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11426
[4] A. H. Saragih, Q. Reyhani, M. S. Setyowati, and A. Hendrawan, “The potential of an artificial intelligence (AI) application for the tax administration system’s modernization: the case of Indonesia,” Artif Intell Law (Dordr), vol. 31, no. 3, pp. 491–514, Sep. 2023, https://doi.org/10.1007/s10506-022-09321-y.
[5] R. Januarita, I. F. Alamsyah, and A. Perdana, “Guardians of data: TruMe Life’s continuous quest for data protection,” Journal of Information Technology Teaching Cases, vol. 15, no. 2, pp. 254–264, Nov. 2025, https://doi.org/10.1177/20438869241242141.
[6] H. Kuswantoro, M. Sholihin, and H. G. Djajadikerta, “Exploring the implementation of sustainable development goals: a comparison between private and state-owned enterprises in Indonesia,” Environ Dev Sustain, vol. 25, no. 10, pp. 10799–10819, Oct. 2023, https://doi.org/10.1007/s10668-022-02505-1.
[7] A. Rijanto, “Business financing and blockchain technology adoption in agroindustry,” Journal of Science and Technology Policy Management, vol. 12, no. 2, pp. 215–235, Jun. 2021, https://doi.org/10.1108/JSTPM-03-2020-0065.
[8] S. M. Anggara, A. Hariyanto, Suhardi, A. Akhmad Arman, and N. Budi Kurniawan, “The Development of Digital Service Transformation Framework for the Public Sector,” IEEE Access, vol. 12, pp. 146160–146189, 2024, https://doi.org/10.1109/ACCESS.2024.3406571.
[9] W. Y. Rusyida, Teknik Peramalan: Metode ARIMA dan Holt Winter. Penerbit NEM, 2022. Accessed: Nov. 20, 2025. [Online]. Available: https://books.google.co.id/books/about/Teknik_Peramalan.html?id=z9-mEAAAQBAJ.
[10] V. N. Dasavandi Krishnamurthy, S. Degadwala, and D. Vyas, “Forecasting Future Sea Level Rise: A Data-driven Approach using Climate Analysis,” in 2023 2nd International Conference on Edge Computing and Applications (ICECAA), IEEE, Jul. 2023, pp. 646–651. https://doi.org/10.1109/ICECAA58104.2023.10212399.
[11] Y. Tadayonrad and A. B. Ndiaye, “A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality,” Supply Chain Analytics, vol. 3, p. 100026, Sep. 2023, https://doi.org/10.1016/j.sca.2023.100026.
[12] S. S. W. Fatima and A. Rahimi, “A Review of Time-Series Forecasting Algorithms for Industrial Manufacturing Systems,” Machines, vol. 12, no. 6, p. 380, Jun. 2024, https://doi.org/10.3390/machines12060380.
[13] N. Kashpruk, C. Piskor-Ignatowicz, and J. Baranowski, “Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements,” Applied Sciences, vol. 13, no. 22, p. 12374, Nov. 2023, https://doi.org/10.3390/app132212374.
[14] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a survey,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 379, no. 2194, p. 20200209, Apr. 2021, https://doi.org/10.1098/rsta.2020.0209.
[15] D. M. Ahmed, M. M. Hassan, and R. J. Mstafa, “A Review on Deep Sequential Models for Forecasting Time Series Data,” Applied Computational Intelligence and Soft Computing, vol. 2022, pp. 1–19, Jun. 2022, https://doi.org/10.1155/2022/6596397.
[16] N. Puspita, I. Kanedi, and I. Y. Beti, “Implementasi Forecasting Penjualan Obat Menggunakan Metode Straight Line Model Pada Apotek Ficus Bengkulu,” Jurnal Media Infotama, vol. 19, no. 2, pp. 384–390, Oct. 2023, https://doi.org/10.37676/jmi.v19i2.4288.
[17] S. Suwarno, F. Fitria, and R. Azhar, “Optimizing Budget Allocation: A Strategic Framework for Aligning Human Resource Investments with Financial Objectives and Business Goals,” Atestasi : Jurnal Ilmiah Akuntansi, vol. 6, no. 2, pp. 835–855, Sep. 2023, https://doi.org/10.57178/atestasi.v6i2.880.
[18] S. P. Tambak, A. Maulidya, and K. Khairani, “Tujuan Manajemen Pendidikan Islam,” Transformasi Manageria: Journal of Islamic Education Management, vol. 3, no. 2, pp. 515–528, May 2023, https://doi.org/10.47467/manageria.v3i2.3180.
[19] S. Hidayatuloh and A. Budiman, “Pengaruh Kualitas Layanan Terhadap Kepuasan Dan Loyalitas Pengguna Mobile Application Online Delivery Order Pizza Menggunakan Model Value-Based Adoption Model (VAM) Extended,” Tekinfo: Jurnal Bidang Teknik Industri dan Teknik Informatika, vol. 23, no. 2, pp. 49–65, Oct. 2022, https://doi.org/10.37817/tekinfo.v23i2.2596.
[20] M. H. Elison, R. Asrianto, and Aryanto, “Prediksi Penjualan Papan Bunga Menggunakan Metode Double Exponential Smoothing,” Jurnal Riset Sistem Informasi dan Teknologi Informasi (JURSISTEKNI), vol. 2, no. 3, pp. 45–56, Sep. 2020, https://doi.org/10.52005/jursistekni.v2i3.60.
[21] V. Tarigan, “Penerapan Metode Double Exponential Smoothing Untuk Memprediksi Jumlah Penjualan Springbed di PT. Masindo Karya Prima,” Jurnal Informatika Polinema, vol. 9, no. 3, pp. 339–346, May 2023, https://doi.org/10.33795/jip.v9i3.1335.
[22] L. Kumar, S. Khedlekar, and U. K. Khedlekar, “A comparative assessment of holt winter exponential smoothing and autoregressive integrated moving average for inventory optimization in supply chains,” Supply Chain Analytics, vol. 8, p. 100084, Dec. 2024, https://doi.org/10.1016/j.sca.2024.100084.
[23] O. Trull, J. C. García-Díaz, and A. Troncoso, “Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models,” Mathematics, vol. 8, no. 2, p. 268, Feb. 2020, https://doi.org/10.3390/math8020268.
[24] R. Fried and A. C. George, “Exponential and Holt-Winters Smoothing,” in International Encyclopedia of Statistical Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2025, pp. 907–911. https://doi.org/10.1007/978-3-662-69359-9_220.
[25] A. P. A. Masa, A. Prafanto, and H. J. Setyadi, “Peramalan Ekspor Batu Bara Indonesia Menggunakan Metode Double Exponential Smoothing Brown,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 3, pp. 1139–1147, Jul. 2024, https://doi.org/10.57152/malcom.v4i3.1552.
[26] M. I. Zaky, A. P. A. Masa, and I. Islamiyah, “Implementasi Metode Double Exponential Smoothing Holt pada Peramalan IPM di Kalimantan Timur,” Jurnal Teknologi Informasi: Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika, vol. 18, no. 2, pp. 117–126, 2024, https://doi.org/10.47111/jti.v18i2.14321.
[27] R. R. A. Sahid, H. Hasna Nabila, and I. Prastya, “Perancangan Sistem Informasi Berbasis Web untuk Layanan Pelanggan Di Segitiga Bermuda Café Coffee & Eatery Menggunakan Metode Waterfall,” Biner : Jurnal Ilmu Komputer, Teknik dan Multimedia, vol. 2, no. 2, pp. 89–99, 2024.
[28] R. S. Dewi, I. Jaya, and I. Husein, “Peramalan Penerimaan Pajak Kendaraan Bermotor Menggunakan Metode Triple Exponential Smoothing di Sumatera Utara,” Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika, vol. 7, no. 2, pp. 572–583, May 2024, https://doi.org/10.30605/proximal.v7i2.3724.
[29] D. N. Abdurrahman and R. Rachman, “Penerapan Data Mining untuk Memprediksi Pendapatan Perusahaan dengan Metode Double Exponential Smoothing dan Triple Exponential Smoothing,” METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 1, pp. 32–36, Mar. 2024, https://doi.org/10.46880/mtk.v10i1.2611.
[30] R. A. B. Syakir and A. A. Budiman, “Perbandingan Akurasi Double Exponential Smoothing dan ARIMA dalam Memprediksi Penjualan di E-Commerce Nibans Cake,” Journal TIFDA (Technology Information and Data Analytic), vol. 1, no. 1, pp. 4–7, Sep. 2024, https://doi.org/10.70491/tifda.v1i1.8.
[31] V. A. Putri and L. T. Utomo, “Penerapan Metode Single Exponential Smoothing dan Double Exponential Smoothing untuk Meramalkan Jumlah Pasien Rawat Jalan Di RSU St. Yoseph Labuan Bajo,” in Seminar Nasional Sistem Informasi (Senasif) 2024, 2024, pp. 4555–4566. https://jurnalfti.unmer.ac.id/index.php/senasif/article/view/548.
[32] L. Lina, A. N. Rahman, and I. Isnurani, “Penerapan Metode Double Exponential Smoothing dari Brown untuk Prediksi Pendapatan Minimarket,” Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, vol. 5, no. 1, pp. 429–440, Apr. 2024, https://doi.org/10.46306/lb.v5i1.577.
[33] A. Anisah and H. Hadita, “Penerapan Metode Forecasting Dalam Menentukan Persediaan Kopi Susu Pada Usaha Mikro Kecil Menengah Dalam Hal Ini Sir Coffeehouse Bekasi,” Journal of Management and Creative Business, vol. 2, no. 1, pp. 97–107, Jan. 2024, https://doi.org/10.30640/jmcbus.v2i1.2070.



