DOI:
https://doi.org/10.64539/msts.v1i1.2025.351Keywords:
Naïve Bayes, Multilayer Perceptron, Decision Tree, Support Vector Machine, Stunting PredictionAbstract
Stunting remains a critical nutritional issue among children, affecting growth and long-term human resource quality. Despite national programs and global targets for stunting reduction, early prediction of stunted children using data-driven methods remains limited. This study aims to evaluate and compare the performance of four supervised machine learning algorithms—Naïve Bayes, Multilayer Perceptron (MLP), Decision Tree (J48), and Support Vector Machine (SVM)—in predicting stunting using a dataset of 97 child records from three villages in East Kalimantan, Indonesia. Data were tested in both unnormalized and normalized forms and split into training and testing sets at 70%–30%, 80%–20%, and 90%–10% ratios. The results indicate that MLP and Decision Tree consistently achieved 100% accuracy across all splits and preprocessing conditions, while Naïve Bayes and SVM showed lower and more variable accuracy in certain cases. These findings suggest that MLP and Decision Tree are the most reliable methods for stunting prediction in small datasets, providing a practical approach for early identification and intervention. The study highlights the importance of algorithm selection and preprocessing in achieving optimal predictive performance in health-related datasets.
References
[1] T. Beal, A. Tumilowicz, A. Sutrisna, D. Izwardy, and L. M. Neufeld, “A review of child stunting determinants in Indonesia,” Matern Child Nutr, vol. 14, no. 4, pp. 1–10, 2018, https://doi.org/10.1111/mcn.12617.
[2] Indonesian Government, “Pepres No 72 Tahun 2021,” Indonesian Government, no. 1, p. 23, 2021.
[3] E. Satriawan, “Strategi Nasional Percepatan Pencegahan Stunting 2018-2024 (National Strategy for Accelerating Stunting Prevention 2018-2024),” Tim Nasional Percepatan Penanggulangan Kemiskinan (TNP2K) Sekretariat Wakil Presiden Republik Indonesia, no. November, pp. 1–32, 2018.
[4] K. Riskerdas, “Hasil Utama Riset Kesehatan Dasar (RISKEDAS),” J Phys A Math Theor, vol. 8, no. 44, pp. 1–200, 2018.
[5] D. A. Sulistyo, Y. S. Putra, and S. Y. Riska, “Metode Agile dalam Pengembangan Sistem Prediksi Prevalensi Stunting di Indonesia,” Network Engineering Research Operation, vol. 5, no. 2, p. 74, Oct. 2020, https://doi.org/10.21107/nero.v5i2.160.
[6] K. Rahmadhita, “Permasalahan Stunting dan Pencegahannya,” Jurnal Ilmiah Kesehatan Sandi Husada, vol. 11, no. 1, pp. 225–229, 2020, https://doi.org/10.35816/jiskh.v11i1.253.
[7] H. H. Sutarno, R. Latuconsina, and A. Dinimaharawati, “Prediksi Stunting pada Balita dengan Menggunakan Algoriitma Klasifikasi K-Nearest Neighbors,” e-Proceeding of Engineering, vol. 8, no. 5, pp. 6657–6661, 2021, Accessed: Nov. 22, 2025. [Online]. Available: https://repositori.telkomuniversity.ac.id/pustaka/files/171048/jurnal_eproc/prediksi-stunting-pada-balita-dengan-menggunakan-algoritma-klasifikasi-k-nearest-neighbors.pdf
[8] V. Herliansyah, R. Latuconsina, and A. Dinimaharawati, “Prediksi Stunting pada Balita dengan menggunakan Algoritma Klasifikasi Naive Bayes,” e-Proceeding of Engineering, vol. 8, no. 5, pp. 6642–6649, 2021, Accessed: Nov. 22, 2025. [Online]. Available: https://repository.telkomuniversity.ac.id/pustaka/files/170976/jurnal_eproc/prediksi-stunting-pada-balita-dengan-menggunakan-algoritma-klasifikasi-na-ve-bayes.pdf
[9] O. N. Chilyabanyama et al., “Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia,” Children, vol. 9, no. 7, 2022, https://doi.org/10.3390/children9071082.
[10] E. Darnila, M. Maryana, K. Mawardi, M. Sinambela, and I. Pahendra, “Supervised models to predict the Stunting in East Aceh,” International Journal of Engineering, Science and Information Technology, vol. 2, no. 3, pp. 33–39, 2022, https://doi.org/10.52088/ijesty.v2i3.280.
[11] M. S. Haris, A. N. Khudori, and W. T. Kusuma, “Perbandingan Metode Supervised Machine Learning untuk Prediksi Prevalensi Stunting di Provisi Jawa Timur,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 7, p. 1571, Dec. 2022, https://doi.org/10.25126/jtiik.2022976744.
[12] M. A. Yulianto and A. Fadlil, “Wood Type Identification System using Naive Bayes Classification,” Control Systems and Optimization Letters, vol. 1, no. 3, pp. 139–143, Sep. 2023, https://doi.org/10.59247/csol.v1i3.52.
[13] A. Yudhana, D. Sulistyo, and I. Mufandi, “GIS-based and Naïve Bayes for nitrogen soil mapping in Lendah, Indonesia,” Sens Biosensing Res, vol. 33, no. 1, pp. 1–13, Aug. 2021, https://doi.org/10.1016/j.sbsr.2021.100435.
[14] M. F. Nugraha and S. B. Rahayu, “Penerapan Naïve Bayes dalam Mengklasifikasi Calon Penerima Bantuan Pangan Non Tunai di Desa Nanjung Mekar,” INTERNAL (Information System Journal), vol. 5, no. 2, pp. 137–146, Dec. 2022, https://doi.org/10.32627/internal.v5i2.634.
[15] A. Y. P. Yusuf and R. Sari, “Implementasi Algoritma Naïve Bayes untuk Klasifikasi Pemahaman Program MBKM bagi Mahasiswa,” Journal of Informatic and Information Security, vol. 3, no. 2, pp. 171–180, Dec. 2022, https://doi.org/10.31599/40dppk38.
[16] A. K. S. Lenson and G. Airlangga, “Comparative Analysis of MLP , CNN , and RNN Models in Automatic Speech Recognition : Dissecting Performance Metric,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 5, no. 4, pp. 576–583, 2023, https://doi.org/10.12928/biste.v5i4.9668.
[17] J. Naskath, G. Sivakamasundari, and A. A. S. Begum, “A Study on Different Deep Learning Algorithms Used in Deep Neural Nets: MLP SOM and DBN,” Wirel Pers Commun, vol. 128, no. 4, pp. 2913–2936, Feb. 2023, https://doi.org/10.1007/s11277-022-10079-4.
[18] J. Zhang, C. Li, Y. Yin, J. Zhang, and M. Grzegorzek, “Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer,” Artif Intell Rev, vol. 56, no. 2, pp. 1013–1070, Feb. 2023, https://doi.org/10.1007/s10462-022-10192-7.
[19] Y. Miftahuddin and M. M. Faturrahman, “Penerapan Data Standardization dan Multilayer Perceptron pada Identifikasi Website Phishing,” MIND (Multimedia Artificial Intelligent Networking Database) Journal, vol. 7, no. 2, pp. 111–123, 2022, https://doi.org/10.26760/mindjournal.v7i2.111-123.
[20] G. Luo, M. A. Arshad, and G. Luo, “Decision Trees for Strategic Choice of Augmenting Management Intuition with Machine Learning,” Symmetry (Basel), vol. 17, no. 7, p. 976, Jun. 2025, https://doi.org/10.3390/sym17070976.
[21] M. Enayati, O. Bozorg-Haddad, M. Pourgholam-Amiji, B. Zolghadr-Asli, and M. Tahmasebi Nasab, “Decision Tree (DT): A Valuable Tool for Water Resources Engineering,” 2022, pp. 201–223. https://doi.org/10.1007/978-981-19-2519-1_10.
[22] R. K. Patra, A. Mahendar, and G. Madhukar, “Inductive Learning Including Decision Tree and Rule Induction Learning,” in Data Mining and Machine Learning Applications, Wiley, 2022, pp. 209–234. https://doi.org/10.1002/9781119792529.ch9.
[23] D. Mihai and M. Mocanu, “Processing GIS Data Using Decision Trees and an Inductive Learning Method,” Int J Mach Learn Comput, vol. 11, no. 6, pp. 393–398, Nov. 2021, https://doi.org/10.18178/ijmlc.2021.11.6.1067.
[24] M. Qiu, “Path Planning Algorithm and ID3 Decision Tree Model Application of Scenic Intelligent Navigation System,” Procedia Comput Sci, vol. 247, pp. 1187–1196, 2024, https://doi.org/10.1016/j.procs.2024.10.143.
[25] C. Liu, J. Lai, B. Lin, and D. Miao, “An improved ID3 algorithm based on variable precision neighborhood rough sets,” Applied Intelligence, vol. 53, no. 20, pp. 23641–23654, Oct. 2023, https://doi.org/10.1007/s10489-023-04779-y.
[26] S. Kraidech and K. Jearanaitanakij, “Improving ID3 Algorithm by Combining Values from Equally Important Attributes,” in 2017 21st International Computer Science and Engineering Conference (ICSEC), IEEE, Nov. 2017, pp. 1–5. https://doi.org/10.1109/ICSEC.2017.8443862.
[27] P. Chhajer, M. Shah, and A. Kshirsagar, “The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction,” Decision Analytics Journal, vol. 2, p. 100015, Mar. 2022, https://doi.org/10.1016/j.dajour.2021.100015.
[28] A. M. Elshewey, M. Y. Shams, N. El-Rashidy, A. M. Elhady, S. M. Shohieb, and Z. Tarek, “Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification,” Sensors, vol. 23, no. 4, p. 2085, Feb. 2023, https://doi.org/10.3390/s23042085.
[29] Y. Afrillia, L. Rosnita, and D. Siska, “Analisis Sentimen Ciutan Twitter Terkait Penerapan Permendikbudristek Nomor 30 Tahun 2021 Menggunakan TextBlob dan Support Vector Machine,” G-Tech: Jurnal Teknologi Terapan, vol. 6, no. 2, pp. 387–394, Oct. 2022, https://doi.org/10.33379/gtech.v6i2.1778.
[30] F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 1, no. 1, pp. 19–25, 2017, https://doi.org/10.29207/resti.v1i1.11.
[31] D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Computer Engineering, Science and System Journal, vol. 4, no. 1, p. 78, 2019, https://doi.org/10.24114/cess.v4i1.11458.



